名廠專場:詳解I2C總線的圖像傳感器配置
發(fā)布時間:2015-06-25 責(zé)任編輯:sherry
【導(dǎo)讀】基于I2C總線的圖像傳感器配置在視頻圖像采集處理系統(tǒng)中非常普遍,本設(shè)計結(jié)合了FPGA 的可編程特性,采用模塊化的方法設(shè)計方法完成了I2C 配置電路的設(shè)計,詳細(xì)介紹了各個模塊的設(shè)計流程和實現(xiàn)方式,最后對整個設(shè)計進(jìn)行了仿真,驗證了設(shè)計的正確性。
基于FPGA 的嵌入式圖像檢測系統(tǒng)因其快速的處理能力和靈活的編程設(shè)計使得它在工業(yè)現(xiàn)場的應(yīng)用非常廣泛,通常這些系統(tǒng)都是通過采集圖像數(shù)據(jù)流并對它實時處理得到所需的特征信息。圖像數(shù)據(jù)的獲取是整個系統(tǒng)的第一步,作為整個系統(tǒng)的最前端,它決定了原始數(shù)據(jù)的質(zhì)量,是整個系統(tǒng)成功的關(guān)鍵。CMOS 圖像傳感器采用CMOS 工藝,可以將圖像采集單元和信號處理單元集成到同一塊芯片上,因而在集成度、功耗、成本上具有很大優(yōu)勢,這使得它在嵌入式圖像處理領(lǐng)域的運用越來越多。CMOS 圖像傳感器芯片大都把 I2C 總線的一個子集作為控制接口,用戶可以很方便地對芯片進(jìn)行編程操作,根據(jù)設(shè)計要求的不同配置圖像傳感器內(nèi)部寄存器數(shù)據(jù),以獲取期望的圖像。
本文以Aptina 公司的MT9P031 圖像傳感器為例,用Verilog 硬件描述語言設(shè)計了I2C 總線的接口電路,以FPGA 作為核心控制器實現(xiàn)了對MT9P031 初始化操作,不僅驗證了I2C 總線的配置效果,得到了理想的圖像數(shù)據(jù),還為后續(xù)線結(jié)構(gòu)光圖像的處理系統(tǒng)奠定了基礎(chǔ)。
1 I2C 總線協(xié)議及MT9P031 配置過程介紹
1.1 I2C 總線協(xié)議
I2C(Inter-Integrated Circuit Bus) 總線是由PHILIPS 公司開發(fā)的兩線式用于芯片之間連接的總線,由于其接口線少,控制方式簡單,通信速率較高等特點,在單片機(jī)、串行EEPROM 等器件中有著廣泛的使用。I2C 總線用兩根信號線來進(jìn)行數(shù)據(jù)傳輸,一根為串行數(shù)據(jù)(SDA, Serial Data),另一根為串行時鐘線(SCL, Serial Clock)。若干兼容器件(如存儲器、A/D、D/A、LCD 驅(qū)動器等)可以共享I2C 總線。I2C 總線上所有器件依靠SDA 發(fā)送的地址信號尋址,不需要片選線。任何時刻總線只能由一個主器件控制,各從器件在總線空閑時啟動數(shù)據(jù)傳輸。
1.2 MT9P031 配置時序分析
由于檢測系統(tǒng)需求的不同,圖像傳感器可能要工作在不同的模式,因此需要通過外部控制器對其內(nèi)部寄存器進(jìn)行讀寫操作,完成具體的配置。典型的寫MT9P031 寄存器時序如圖1 所示,起始信號過后,F(xiàn)PGA 先寫入設(shè)備(即MT9P031)的地址0xBA,然后釋放SDATA 數(shù)據(jù)總線,隨后MT9P031 返回一個應(yīng)答信號ACK,F(xiàn)PGA 獲取應(yīng)答信號后,經(jīng)過一個時鐘周期再傳送待配置的寄存器地址0x09,在獲取應(yīng)答信號后再傳送16 位的寄存器數(shù)據(jù),由于每次只能發(fā)送8 位數(shù)據(jù),所以這16位的寄存器數(shù)據(jù)要分兩次才能發(fā)送完畢,先發(fā)送的是高八位數(shù)據(jù),后發(fā)送的為低八位數(shù)據(jù),每發(fā)送完一個字節(jié)的數(shù)據(jù),F(xiàn)PGA均會獲取一位的應(yīng)答信號,然后結(jié)束一個傳送周期,完成一個寄存器的配置,即IDAddress+ SUB-Address + W-Data 總共32位的數(shù)據(jù)。重復(fù)上述過程可以對不同的寄存器進(jìn)行不同的參數(shù)配置。
圖1 寫MT9P031 時序圖
2 FPGA 模塊設(shè)計
為了實現(xiàn)對圖像傳感器的正確配置,必須嚴(yán)格按照MT9P031 的配置時序完成設(shè)計,本設(shè)計中I2C 總線配置模塊主要由三個小模塊構(gòu)成,它們分別是I2C_Clock_Generator、I2C_Controller 和Register_Value,各模塊之間的連接如圖2 所示。
圖2 I2C 總線配置模塊結(jié)構(gòu)框圖
I2C_Clock_Generator 主要產(chǎn)生負(fù)責(zé)產(chǎn)生I2C 串行時鐘信號,根據(jù)協(xié)議數(shù)據(jù)傳輸有三種速度模式:正常模式100Kb/s、快速模式400Kb/s、高速模式3.4Mb/s,為了保證配置的準(zhǔn)確性和成功率,設(shè)計中采用了100Kb/ 的速度模式,即SCLK 的頻率為100KHz,因為FPGA 外部輸入的時鐘為50MHz,所以需要對其分頻獲得。同時該模塊還負(fù)責(zé)產(chǎn)生數(shù)據(jù)傳輸有效信號,保證SDAT 的改變發(fā)生在SCLK 的低電平時段。
Register_Value 其實一個查找表,負(fù)責(zé)保存MT9P031 內(nèi)部需要配置的寄存器地址和數(shù)據(jù),查找表內(nèi)數(shù)據(jù)的位數(shù)都是24bit,單獨作為一個模塊的目的是為了方便用戶改變配置數(shù)據(jù),決定圖像傳感器的不同工作狀態(tài)。
I2C_Controller 是圖像傳感器配置設(shè)計的核心模塊,主要完成了啟停命令產(chǎn)生、字節(jié)發(fā)送和讀取、應(yīng)答信號采集等功能。同時,I2C_Controller 模塊還產(chǎn)生I2C讀寫時序,由狀態(tài)機(jī)嚴(yán)格按照I2C 協(xié)議實現(xiàn),將Register Value 部分送出的24 位操作碼I2C_DAT 轉(zhuǎn)化成為正確的I2C 時序。一個寄存器的數(shù)據(jù)傳輸完成后,模塊還將判斷寄存器配置數(shù)據(jù)是否發(fā)送順利,如果一切正常,LUT_INDEX 信號會自動加一,控制Register Value 查找表產(chǎn)生下一個寄存器的地址和數(shù)據(jù)。
3 I2C 接口的仿真及調(diào)試
為了驗證MT9P031 配置過程中I2C時序的正確性,本設(shè)計在Modelsim Se10.1c 版軟件平臺中對整個模塊進(jìn)行了功能仿真,在Test bench 中模擬了50MHz 控制時鐘以及復(fù)位信號,觀察最終輸出端的波形情況。圖3 是對MT9P031 的寄存器地址0x00 進(jìn)行讀操作的仿真波形圖,圖4是對寄存器地址0x01 寫入0x01EA 的仿真波形圖。
圖3 讀取寄存器0x00 的波形仿真
圖4 向寄存器0x01 寫入數(shù)據(jù)0x01EA 的波形仿真
4 總結(jié)
基于I2C總線的圖像傳感器配置在視頻圖像采集處理系統(tǒng)中非常普遍,本設(shè)計結(jié)合了FPGA 的可編程特性,采用模塊化的方法設(shè)計方法完成了I2C 配置電路的設(shè)計,詳細(xì)介紹了各個模塊的設(shè)計流程和實現(xiàn)方式,最后對整個設(shè)計進(jìn)行了仿真,驗證了設(shè)計的正確性。綜合調(diào)試后占用資源極小,可靠性高,而且利用Verilog 硬件描述語言的設(shè)計使得可移植性很強(qiáng),具有廣泛的應(yīng)用價值。
特別推薦
- 利用運動喚醒功能優(yōu)化視覺系統(tǒng)的功耗
- 宜普電源轉(zhuǎn)換公司勝訴,美國國際貿(mào)易委員會終裁確認(rèn)英諾賽科侵權(quán)
- 功率器件熱設(shè)計基礎(chǔ)(一)——功率半導(dǎo)體的熱阻
- 泰矽微重磅發(fā)布超高集成度車規(guī)觸控芯片TCAE10
- 瑞薩與尼得科攜手開發(fā)創(chuàng)新“8合1”概念驗證,為電動汽車驅(qū)動電機(jī)提供高階集成
- Bourns 推出兩款大電流氣體放電管 (GDT) 新品,適用于交流和直流電源設(shè)計
- 多維科技推出用于游戲手柄的新型TMR傳感器芯片TMR2615和TMR2617
技術(shù)文章更多>>
- 貿(mào)澤電子與Analog Devices聯(lián)手推出新電子書探討電子設(shè)計中的電源效率與穩(wěn)健性
- 下一代汽車微控制器:意法半導(dǎo)體技術(shù)解析
- 安森美與伍爾特電子攜手升級高精度電力電子應(yīng)用虛擬設(shè)計
- 48 V技術(shù)的魅力:系統(tǒng)級應(yīng)用中的重要性、優(yōu)勢與關(guān)鍵要素
- 兆易創(chuàng)新MCU新品重磅揭幕,以多元產(chǎn)品和方案深度解鎖工業(yè)應(yīng)用場景
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
通訊電源
通用技術(shù)
同步電機(jī)
同軸連接器
圖像傳感器
陀螺傳感器
萬用表
萬用表使用
網(wǎng)絡(luò)電容
微波
微波功率管
微波開關(guān)
微波連接器
微波器件
微波三極管
微波振蕩器
微電機(jī)
微調(diào)電容
微動開關(guān)
微蜂窩
位置傳感器
溫度保險絲
溫度傳感器
溫控開關(guān)
溫控可控硅
聞泰
穩(wěn)壓電源
穩(wěn)壓二極管
穩(wěn)壓管
無焊端子