由于設(shè)計(jì)中采用理想導(dǎo)體饋電,故Qc = 0。所以:
技術(shù)分享:?jiǎn)晤l圓形微帶貼片天線設(shè)計(jì)
發(fā)布時(shí)間:2015-03-28 責(zé)任編輯:sherry
【導(dǎo)讀】本文對(duì)于微帶貼片天線的設(shè)計(jì),是基于其在無(wú)線引信中的應(yīng)用而進(jìn)行的。該設(shè)計(jì)為了便于引信的使用,將常規(guī)微帶天線的矩形介質(zhì)改為圓形。從文中天線的幾個(gè)仿真結(jié)果圖可以看出,天線的中心頻率為7.2 GHz,且此時(shí)的天線回波損耗、輸入阻抗、增益方向圖等技術(shù)參數(shù)都達(dá)到了要求。結(jié)果表明該天線的性能良好。
微帶天線是在一塊背面敷以金屬薄層作接地板的介質(zhì)基片上,貼一金屬輻射片而形成的天線。它有微帶線和同軸線這兩種主要的饋電方式。微帶天線在金屬貼片與金屬接地板之間激發(fā)輻射場(chǎng),通過(guò)貼片四周與接地板之間的縫隙向外輻射,因此也稱(chēng)作縫隙天線。頻帶窄、功率容量小、損耗大和基片對(duì)性能影響較大等是微帶天線的缺點(diǎn),其優(yōu)點(diǎn)是體積小,質(zhì)量輕,低剖面,制造簡(jiǎn)單,成本低,易集成,容易實(shí)現(xiàn)雙頻、多頻段工作等,也正是這些優(yōu)點(diǎn),使得工作在100 MHz~50 GHz頻率范圍內(nèi)的微帶天線常用于衛(wèi)星通信、指揮和控制系統(tǒng)、導(dǎo)彈遙測(cè)、武器引信、環(huán)境檢測(cè)等。
無(wú)線電引信在軍事上可用于控制武器彈丸的引炸,來(lái)達(dá)到最大的殺傷效果。而天線屬于引信察覺(jué)裝置的一部分,用于發(fā)射和接收信號(hào)。所以,天線的性能對(duì)引信的工作狀態(tài)以及武器彈丸的殺傷力有非常大的影響。由于天線要附著在彈頭上,而一般的彈體頭部大都是圓錐形,為了便于將微帶天線安裝在彈頭部位,本文將設(shè)計(jì)一個(gè)中心頻率為7.2 GHz的圓形微帶貼片天線,其相對(duì)介電常數(shù)為εr = 4.4,損耗正切tan δ = 0.164 6。
1 圓形微帶天線設(shè)計(jì)
1.1 介質(zhì)設(shè)計(jì)
在天線設(shè)計(jì)中,介質(zhì)基片的材料及厚度,對(duì)天線的性能有很大影響,所以首先需要考慮介質(zhì)的材料及其厚度。而材料選擇主要考慮的電特性參數(shù)是其相對(duì)介電常數(shù)εr和損耗角正切tan δ。介電常數(shù)的穩(wěn)定性非常重要,變化的介電常數(shù)將導(dǎo)致貼片頻率漂移。介電常數(shù)大能減小貼片尺寸,但通常也會(huì)減小貼片單元帶寬;介電常數(shù)小又會(huì)增加貼片周?chē)倪吘増?chǎng),降低輻射效率。大損耗基片常常會(huì)降低天線效率,增加反饋損耗,所以在選擇介質(zhì)材料時(shí),需要綜合考慮。本設(shè)計(jì)綜合考慮后,確定以FR4環(huán)氧樹(shù)脂板為介質(zhì)材料,其相對(duì)介電常數(shù)為εr = 4.4,損耗正切tan δ = 0.164 6,這也是微帶天線設(shè)計(jì)中常用的一種材料。
對(duì)基片的厚度而言,厚介質(zhì)基片,可提高天線機(jī)械強(qiáng)度、增加輻射功率、減小導(dǎo)體損耗,展寬頻帶;但同時(shí)也會(huì)增加介質(zhì)損耗,引起表面波的明顯激勵(lì)。對(duì)于一個(gè)最大工作頻率fm,根據(jù)微帶電路理論,厚度應(yīng)該滿足:
式中:c為光速;fm 為最大工作頻率,εr 為相對(duì)介電常數(shù)。通常在h/fm< 0.1 即可保證不會(huì)引起表面波的明顯激勵(lì)。
本設(shè)計(jì)以FR4板為介質(zhì)基片,根據(jù)設(shè)計(jì)要求,考慮到擴(kuò)寬頻帶,和減小天線的體積要求,再結(jié)合式(1),給出介質(zhì)厚度的初始值為2 mm。
1.2 輻射貼片設(shè)計(jì)
對(duì)于已知的介質(zhì)基片,在給定的工作頻率fr=7.20 GHz時(shí),圓形微帶天線的貼片半徑為:
1.3 天線的饋電及輸入阻抗
本設(shè)計(jì)采用同軸饋電的方式,是通過(guò)在輻射貼片上的饋電點(diǎn)位置不同來(lái)改變輸入阻抗,使天線獲得阻抗匹配。一般的微波器件通用的是50 Ω系統(tǒng),所以需要通過(guò)改變饋電點(diǎn)的位置來(lái)使天線達(dá)到50 Ω的輸入阻抗。計(jì)算天線的輸入阻抗,需要從介質(zhì)損耗、輻射損耗、導(dǎo)體損耗、表面波損耗幾個(gè)方面考慮,不能單方面考慮某一因素,否則會(huì)引起很大的誤差。Qr,Qc,Qd,Qs分別是輻射損耗、導(dǎo)體損耗、介質(zhì)損耗和表面波損耗所引起的相應(yīng)Q 值。
天線工作在主模,即TM11 時(shí):
[page]由于設(shè)計(jì)中采用理想導(dǎo)體饋電,故Qc = 0。所以:
式中:J1 是一階第一類(lèi)貝塞耳函數(shù)。令R = 50 Ω ,代入式(8),就可以估算出饋電點(diǎn)的位置L,即在離圓形貼片中心L 處饋電,即是天線達(dá)到50 Ω 的輸入阻抗。
同軸線內(nèi)芯半徑暫時(shí)設(shè)為0.6 mm,同時(shí)在接地板上挖出一個(gè)圓孔作為信號(hào)輸入端口,將內(nèi)芯包圍起來(lái)構(gòu)成同軸線,半徑約為1.5 mm,端口的阻抗為50 Ω。
通過(guò)上面分析,得出天線參數(shù)的初始值:圓形輻射貼片半徑:a = 5.39 mm;介質(zhì)基片厚度:h = 2.00 mm;介質(zhì)基片半徑2*a;饋電點(diǎn)位置:L = 1.96 mm;內(nèi)芯半徑:n = 0.6 mm;外芯半徑:m = 1.5 mm。
2 運(yùn)用HFSS 軟件進(jìn)行天線仿真
基于ANSOFT 公司HFSS 三維仿真軟件,對(duì)天線進(jìn)行建模分析。仿真流程見(jiàn)圖1。
圖1 仿真流程圖
根據(jù)初始尺寸及HFSS天線設(shè)計(jì)要求,創(chuàng)建天線初始模型如圖2所示。
圖2 天線結(jié)構(gòu)圖
通過(guò)HFSS對(duì)初始值的仿真可知,當(dāng)前的初始值并沒(méi)有完全使天線達(dá)到7.2 GHz,且此時(shí)天線的各項(xiàng)性能指標(biāo)也達(dá)不到要求。那么,需要用到HFSS的掃頻分析和優(yōu)化設(shè)計(jì)功能來(lái)優(yōu)化天線的各項(xiàng)參數(shù),使引信天線的性能達(dá)到最佳。
[page]
2.1 天線的優(yōu)化設(shè)計(jì)
(1)通過(guò)HSFF 軟件在諧振頻率附近做掃頻分析,對(duì)圓形貼片的半徑進(jìn)行修正??梢缘玫?.2 GHz 時(shí)對(duì)應(yīng)的貼片半徑a 的最佳值為5.216 mm。
(2)分析介質(zhì)基片厚度對(duì)天線性能的影響。借助于HFSS,得到對(duì)于不同的介質(zhì)基片厚度對(duì)天線回波損耗的影響。根據(jù)回波損耗隨介質(zhì)基片厚度的變化圖和不同介質(zhì)基片厚度對(duì)S11, Smith 圓圖的影響,可以分析出介質(zhì)基片厚度的最佳值h = 2.021 mm。
(3)分析饋電點(diǎn)位置對(duì)天線性能的影響。這部分主要是分析不同的饋電位置與回波損耗及輸入阻抗之間的關(guān)系。并通過(guò)對(duì)饋電點(diǎn)位置L 的掃描,選擇出最符合條件的饋電點(diǎn)L = 1.863 mm。
(4)用HFSS 軟件設(shè)計(jì)好天線的標(biāo)準(zhǔn),然后對(duì)天線的各個(gè)參量進(jìn)行系統(tǒng)自動(dòng)優(yōu)化,計(jì)算出符合條件的各參數(shù)的最佳值。得到的結(jié)果如下:
圓形輻射貼片半徑:a=5.216 mm;介質(zhì)基片厚度:h=2.021 mm;介質(zhì)基片半徑2*a;饋電點(diǎn)位置:L=1.863 mm;內(nèi)芯半徑:n=0.516 mm;外芯半徑:m=1.854 mm。
2.2 結(jié)果分析
由HFSS軟件給出在優(yōu)化尺寸下的S11,Simth圓圖、增益的方向圖,如圖3~圖5所示。
圖5
從圖3 結(jié)果可以看出,設(shè)計(jì)天線的諧振頻率是7.2 GHz,且此時(shí)的回波損耗為-33.037 9 dB,達(dá)到了天線的設(shè)計(jì)要求。
圖4顯示,在頻率為7.2 GHz時(shí),天線的歸一化阻抗為(0.977 5 + 0.037 9i)Ω ,這個(gè)結(jié)果顯示出此時(shí)天線達(dá)到了很好的阻抗匹配狀態(tài)。
圖5是天線在xz 和yz 截面上的增益方向圖。圖示結(jié)果顯示,最大輻射方向?yàn)?phi; = 0°, θ = 0°,且增益為5.486 dB。
圖6是天線的三維增益方向圖。
圖6 三維增益方向圖
特別推薦
- 利用運(yùn)動(dòng)喚醒功能優(yōu)化視覺(jué)系統(tǒng)的功耗
- 宜普電源轉(zhuǎn)換公司勝訴,美國(guó)國(guó)際貿(mào)易委員會(huì)終裁確認(rèn)英諾賽科侵權(quán)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(一)——功率半導(dǎo)體的熱阻
- 泰矽微重磅發(fā)布超高集成度車(chē)規(guī)觸控芯片TCAE10
- 瑞薩與尼得科攜手開(kāi)發(fā)創(chuàng)新“8合1”概念驗(yàn)證,為電動(dòng)汽車(chē)驅(qū)動(dòng)電機(jī)提供高階集成
- Bourns 推出兩款大電流氣體放電管 (GDT) 新品,適用于交流和直流電源設(shè)計(jì)
- 多維科技推出用于游戲手柄的新型TMR傳感器芯片TMR2615和TMR2617
技術(shù)文章更多>>
- 利用IMU增強(qiáng)機(jī)器人定位:實(shí)現(xiàn)精確導(dǎo)航的基礎(chǔ)技術(shù)
- 貿(mào)澤電子與Analog Devices聯(lián)手推出新電子書(shū)探討電子設(shè)計(jì)中的電源效率與穩(wěn)健性
- 下一代汽車(chē)微控制器:意法半導(dǎo)體技術(shù)解析
- 安森美與伍爾特電子攜手升級(jí)高精度電力電子應(yīng)用虛擬設(shè)計(jì)
- 48 V技術(shù)的魅力:系統(tǒng)級(jí)應(yīng)用中的重要性、優(yōu)勢(shì)與關(guān)鍵要素
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
通訊電源
通用技術(shù)
同步電機(jī)
同軸連接器
圖像傳感器
陀螺傳感器
萬(wàn)用表
萬(wàn)用表使用
網(wǎng)絡(luò)電容
微波
微波功率管
微波開(kāi)關(guān)
微波連接器
微波器件
微波三極管
微波振蕩器
微電機(jī)
微調(diào)電容
微動(dòng)開(kāi)關(guān)
微蜂窩
位置傳感器
溫度保險(xiǎn)絲
溫度傳感器
溫控開(kāi)關(guān)
溫控可控硅
聞泰
穩(wěn)壓電源
穩(wěn)壓二極管
穩(wěn)壓管
無(wú)焊端子