你的位置:首頁 > 互連技術 > 正文

第3講:SiC的晶體結構

發(fā)布時間:2024-08-16 責任編輯:lina

【導讀】SiC是由硅(Si)和碳(C)按1:1的化學計量比組成的晶體,因其內部結構堆積順序的不同,形成不同的SiC多型體,本篇章帶你了解SiC的晶體結構及其可能存在的晶體缺陷。


SiC是由硅(Si)和碳(C)按1:1的化學計量比組成的晶體,因其內部結構堆積順序的不同,形成不同的SiC多型體,本篇章帶你了解SiC的晶體結構及其可能存在的晶體缺陷。


半導體SiC是由硅(Si)和碳(C)按1:1的化學計量比組成的晶體,屬于化合物半導體的一種。硅和碳都是IV族元素,每個原子都有4個共價鍵,硅和碳以四面體交替配位結合形成晶體。


一對Si原子和C原子組成基本結構單元,這些結構單元以最緊密堆積起來組成SiC晶體。SiC存在許多具有不同堆積順序的穩(wěn)定晶體(晶體多型現(xiàn)象)。圖1顯示了由Si原子和C原子組成的基本結構單元平鋪成平面,并以最緊密的方式堆積的情況。當在每個平面結構上堆積其他平面結構時,有兩種可能的堆積順序(可在A平面上的B點或C點堆積)。SiC存在多種可能的堆積順序,因此存在具有不同堆積結構的晶體。并且堆積順序的不同導致的能量差異相對較小。


第3講:SiC的晶體結構

圖1:平面排列的Si-C基本結構單元,以及在其上堆積結構單元時的位置


代表性的SiC晶體多型有3C型、4H型和6H型等。這里的數字表示沿著堆積方向一周期內的碳硅雙原子層數,C代表立方晶系(cubic),H代表六方晶系(hexagonal)。SiC晶體制造過程中,由于溫度等條件的不同,決定所形成的多型體。4H型SiC的堆積順序如圖2所示,表1總結了各種多型體的堆積順序。



第3講:SiC的晶體結構

圖2:4H型SiC的堆積順序


第3講:SiC的晶體結構

表1:SiC各種多型體的堆積順序


SiC具有間接躍遷型能帶結構,并且不同多型體具有不同的禁帶寬度。例如,以4H型SiC為例,其禁帶寬度為3.26eV,是Si的大約3倍。順便說一下,可見光的能量范圍是1.7eV~3.3eV,高純度的4H型SiC晶體對可見光是透明的。為什么用于器件制造的SiC晶體會呈現(xiàn)出黃色或綠色?高濃度n型摻雜SiC晶體在導帶中存在大量載流子(電子),由于能帶結構的原因,它們會吸收特定能量的可見光。


半導體的禁帶寬度通常會隨著原子間距的減小而增大。例如,SiC的禁帶寬度大于Si(1.1eV),小于C(金剛石)(5.5eV)。此外,GaN的原子間距離(0.192nm)和SiC的原子間距離(0.189nm)相近,因此兩者的禁帶寬度也接近(GaN為3.4eV)。禁帶寬度大意味著電子激發(fā)從價帶到導帶所需的能量大,換言之,導致功率器件發(fā)生耐壓擊穿的電場更大。因此,與功率器件的主流材料Si相比,SiC具有耐高壓的特性,是功率器件的理想選擇。表2列出了SiC的各種多型體的禁帶寬度。


第3講:SiC的晶體結構

表2:SiC不同多型體的禁帶寬度


在現(xiàn)存的穩(wěn)定多型體中,用于電力轉換的功率器件通常采用4H型SiC,其擊穿電場強度大、各向異性小。目前市場上用于功率器件的SiC襯底幾乎全部采用n型導電的4H型結構,在偏離(0001)面4°制造器件。



在SiC晶體內部,有時會存在局部Si-C層的堆積順序發(fā)生晶體缺陷(堆垛層錯)。當堆積順序改變時,導帶和價帶的能級也會發(fā)生變化。例如,在4H型SiC中,如果部分區(qū)域出現(xiàn)其他堆積順序,該區(qū)域的禁帶寬度將小于周圍區(qū)域,從而形成矩形勢阱(圖3)。當雙極性電流通過時,載流子(電子、空穴)會被捕獲,從而影響SiC器件的導電性(例如增加導通電阻等)。在制造器件時,必須考慮到這一點。三菱電機通過各種測試和獨特的器件結構設計來應對這一問題。


第3講:SiC的晶體結構

圖3:SiC的能帶結構(左)、引入堆垛層錯后的能帶結構(右)


關于三菱電機

三菱電機創(chuàng)立于1921年,是全球知名的綜合性企業(yè)。截止2024年3月31日的財年,集團營收52579億日元(約合美元348億)。作為一家技術主導型企業(yè),三菱電機擁有多項專利技術,并憑借強大的技術實力和良好的企業(yè)信譽在全球的電力設備、通信設備、工業(yè)自動化、電子元器件、家電等市場占據重要地位。尤其在電子元器件市場,三菱電機從事開發(fā)和生產半導體已有68年。其半導體產品更是在變頻家電、軌道牽引、工業(yè)與新能源、電動汽車、模擬/數字通訊以及有線/無線通訊等領域得到了廣泛的應用。

文章來源:三菱電機半導體


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。


推薦閱讀:

二進制密鑰掃描實現(xiàn)預警守護,阻擊潛在供應鏈重大安全隱患

使用環(huán)路供電隔離器解決接地環(huán)路問題

有源全波整流器無需匹配電阻?來看看這個非常規(guī)設計

麥克風傳感器的選擇與設計技巧

全方面的高功率直流快速充電解決方案


特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉