EMI的工程師指南第9部分——擴(kuò)頻調(diào)制
發(fā)布時(shí)間:2021-04-09 責(zé)任編輯:wenwei
【導(dǎo)讀】削弱電磁干擾 (EMI) 是所有電子系統(tǒng)中存在的問題。許多規(guī)范將電磁兼容性 (EMC) 與適應(yīng)規(guī)定屏蔽下干擾功率譜級(jí)的能力相關(guān)聯(lián),恰恰證明了這一點(diǎn) [1]。尤其是高頻開關(guān) DC/DC 轉(zhuǎn)換器,開關(guān)換向過程中存在的高轉(zhuǎn)換率電壓和電流可能在穩(wěn)壓器自身(EMI 源)以及附近的敏感電路(受 EMI 干擾的設(shè)備)中產(chǎn)生嚴(yán)重的傳導(dǎo)和輻射干擾。本系列文章 [1-8] 的第 5 部分和第 6 部分回顧了多種適用于非隔離穩(wěn)壓器設(shè)計(jì)的 EMI 抑制技術(shù)。第 7 部分和第 8 部分回顧了隔離設(shè)計(jì)中的共模 (CM) 噪聲及其抑制技術(shù)。
一般而言,遵守電磁標(biāo)準(zhǔn)對(duì)于開關(guān)電源愈發(fā)重要,這不僅局限于總光譜能量過大,更多的原因是能量集中在基本開關(guān)頻率及其諧波的特定窄帶中。為此,第 9 部分提出通過擴(kuò)頻調(diào)頻 (SSFM) 技術(shù)將頻譜能量分配到頻譜中,使基波和諧波噪聲峰值幅值變得平整。圖 1 所示的擴(kuò)頻效應(yīng)可作為本系列文章前幾部分中介紹的 EMI 抑制技術(shù)的補(bǔ)充降噪方法。
圖 1:擴(kuò)頻效應(yīng)
擴(kuò)頻調(diào)制
本系列文章第 5 部分和第 6 部分中探討的 EMI 抑制技術(shù)重點(diǎn)關(guān)注減小天線因子,實(shí)現(xiàn)方式為謹(jǐn)慎使用高轉(zhuǎn)換率電流 (di/dt) 回路布局以及采用適當(dāng)?shù)木彌_電路和柵極驅(qū)動(dòng)電路設(shè)計(jì)來避免劇烈的瞬態(tài)電壓 (dv/dt)。這些方法通過降低總功率來調(diào)整傳導(dǎo)噪聲和/或輻射噪聲功率頻譜的形狀,主要對(duì)高頻有效,對(duì)于低頻的作用效果可能較為有限。
相反,1992 年首次針對(duì) DC/DC 轉(zhuǎn)換器提出的擴(kuò)頻調(diào)制(也稱為抖動(dòng))[9] 希望在不影響總噪聲功率的前提下針對(duì)傳導(dǎo)和輻射干擾功率譜的形狀進(jìn)行調(diào)整。通過在時(shí)域中對(duì)基準(zhǔn)時(shí)鐘信號(hào)進(jìn)行頻率調(diào)制 (FM),會(huì)根據(jù)調(diào)制信號(hào)在頻域中對(duì)基波和諧波分量進(jìn)行掃頻 [9-14]。如圖 1 所示,每個(gè)諧波均轉(zhuǎn)化為若干個(gè)幅值較小的邊帶諧波。噪聲頻譜從大頻譜峰值集中在開關(guān)頻率及其諧波處的一系列頻譜變?yōu)楦悠骄?、峰值更小并且更加連續(xù)的頻譜。
從實(shí)際 EMC 的角度來看,當(dāng)窄帶 EMI 源的信號(hào)頻率與受 EMI 干擾的敏感頻率范圍相匹配時(shí),可在給定時(shí)間窗口內(nèi)傳輸大量功率,受 EMI 干擾的設(shè)備受到干擾或發(fā)生故障的概率隨之增大。如果將 EMI 源信號(hào)擴(kuò)展到大于受 EMI 干擾設(shè)備的敏感帶寬,耦合到受干擾設(shè)備的噪聲功率隨之減小,從整體改善 EMI 性能和可靠性。
周期性調(diào)制函數(shù)
周期性擴(kuò)頻調(diào)制技術(shù)的主要作用是將各諧波擴(kuò)展到預(yù)設(shè)頻段,降低峰值幅值并減弱 EMI 水平。在這一背景下,公式 1 提供了通過擴(kuò)頻調(diào)制對(duì)正弦載波進(jìn)行調(diào)頻的一般分析表達(dá)式:
其中 A 是未調(diào)制信號(hào)的幅值,fc 為載波頻率,Δf 是頻率偏差。
歸一化周期調(diào)試函數(shù)為 ξ(t),反映了擴(kuò)頻的頻率變化。表 1 列出了正弦波、三角波和指數(shù)(也稱為三次方或“好時(shí)之吻”)調(diào)制曲線 [10] 的數(shù)學(xué)表達(dá)式。其中,kT 是三角波曲線的對(duì)稱指數(shù),取值范圍為 0 到 1,p 用于指定指數(shù)曲線的凹度系數(shù)。如果 kT 為 0.5,則三角波曲線具有對(duì)稱的三角形圖案。
表 1:正弦波、三角波和指數(shù)調(diào)制曲線,其中 fm 和 Tm 分別為調(diào)制信號(hào)頻率和周期
圖 2 所示為采用 10kHz 調(diào)制頻率的正弦波、三角波和指數(shù)調(diào)制信號(hào)。圖中還可以看出,通過調(diào)制 100kHz 正弦載波信號(hào)得出的相應(yīng)擴(kuò)頻結(jié)果與公式 1 一致。每個(gè)圖象的頂部均指出明顯的瞬時(shí)載波工作頻率。
圖 2:fc = 100 kHz、Df = 50 kHz、fm = 10 kHz、kT = 0.5 和 p = 70 kHz 時(shí)的正弦波 (a);三角波 (b) 和指數(shù) (c) 調(diào)制曲線
其它相關(guān)項(xiàng)分別為公式 2 和 3 得出的調(diào)制系數(shù)與調(diào)制比:
s(t) 的總功率等于 A2 / 2。根據(jù)卡森帶寬規(guī)則,總功率使用擴(kuò)頻技術(shù)分配,即擴(kuò)頻后的能量有 98% 包含在公式 4 中給出的帶寬 B 中(請(qǐng)參見圖 1):
對(duì)于更為復(fù)雜的波形,比如開關(guān)節(jié)點(diǎn)電壓波形或 DC/DC 轉(zhuǎn)換器的輸入電流波形,更改瞬時(shí)頻率相當(dāng)于對(duì)傅里葉級(jí)數(shù)展開的每個(gè)構(gòu)成諧波應(yīng)用公式 1。唯一的區(qū)別在于會(huì)將第 n 次諧波在 n 倍卡森帶寬(由公式 5 得出)的帶寬范圍內(nèi)進(jìn)行擴(kuò)頻。
s(t) 頻譜的實(shí)際形狀由 Df 和 ξ(t) 決定。如果 ξ(t) 是周期為 Tm 的周期函數(shù),則 s(t) 的頻譜呈離散狀態(tài),這意味著可將信號(hào)分解為一系列頻率為 fc ± k/Tm 的正弦音調(diào),每個(gè)信號(hào)的幅值為 Ak??赏ㄟ^貝塞爾函數(shù)計(jì)算正弦調(diào)制的 Ak [9,10],而三角波調(diào)制的頻譜形狀已通過 Matlab 仿真進(jìn)行評(píng)估 [11]。
真正連續(xù)的功率頻譜只能通過非周期調(diào)制函數(shù)獲得(如使用混沌序列發(fā)生器或隨機(jī)序列發(fā)生器獲得),并通過功率頻譜密度進(jìn)行描述。與周期擴(kuò)頻技術(shù)相反,非周期調(diào)制測(cè)得的頻譜形狀與測(cè)量儀器的分辨率帶寬 (RBW) 設(shè)置無關(guān) [15,16]。下一節(jié)將探討 RBW 對(duì)于 EMI 測(cè)量的影響。
雖然正弦擴(kuò)頻技術(shù)更易于分析和實(shí)現(xiàn),但無法獲得最佳頻譜形狀并且諧波衰減未達(dá)到最大程度。如圖 3 所示,調(diào)制波形頻譜中的能量趨向于集中在調(diào)制波形中時(shí)間導(dǎo)數(shù)較小、靠近正弦波形波峰和波谷的各點(diǎn)對(duì)應(yīng)的頻率。另一方面,指數(shù)調(diào)制函數(shù)具有最平坦的頻譜,可針對(duì)靠近卡森帶寬兩端出現(xiàn)的二階效應(yīng)而產(chǎn)生的峰值進(jìn)行補(bǔ)償,進(jìn)一步減小 EMI。然而,指數(shù)波形在實(shí)踐中難以實(shí)現(xiàn),通常需要復(fù)雜的失真電路或查詢表。
圖 3:正弦波 (a)、三角波 (b) 和指數(shù) (c) 調(diào)制曲線及頻域特性
線性三角形調(diào)制代表圖 3 所示的調(diào)制曲線之間已達(dá)到良好的折中,很容易在模擬和數(shù)字域中實(shí)現(xiàn)。通過選擇經(jīng)過優(yōu)化并且正確定義的三角波驅(qū)動(dòng)信號(hào)頻率,最大限度地降低測(cè)得的 EMI 頻譜的峰值,可以為汽車等大批量、成本優(yōu)化型應(yīng)用提供穩(wěn)健的設(shè)計(jì)。
通過擴(kuò)頻優(yōu)化 EMI 抑制
國際規(guī)定要求使用 EMI 接收器進(jìn)行測(cè)量。EMI 接收器的本質(zhì)是額外配備一些輸入濾波器的模擬頻譜分析儀。鑒于測(cè)量 EMI 的超外差頻譜分析儀的復(fù)雜性 [16](特別是解調(diào)包絡(luò)檢波器和峰值/準(zhǔn)峰值/平均值檢波器的非線性),[11] 中的研究人員使用 EMI 接收器的 Matlab 模型,通過基于三角波調(diào)制的擴(kuò)頻技術(shù)計(jì)算降低的 EMI,從而得出三角波擴(kuò)頻的優(yōu)化曲線。舉例來說,圖 4 提供的噪聲級(jí)下降曲線基于多個(gè)頻率偏差值 Df,均為 EMI 接收器 RBW 設(shè)置的倍數(shù)。請(qǐng)注意,如果 m 超出某一特定值,EMI 抑制性能隨之下降。
圖 4:與不同 RBW/Df 比的 EMI 接收器響應(yīng)相一致的三角波調(diào)制功率頻譜噪聲級(jí)下降,其中固定 Df 并改變 fm 時(shí),調(diào)制系數(shù)會(huì)發(fā)生變化。0dB 基準(zhǔn)是未調(diào)制的情況
選擇調(diào)制擴(kuò)頻參數(shù) Df 和 fm 時(shí),需要在兩方面進(jìn)行權(quán)衡。首先,Df 應(yīng)足夠大,減小 EMI 測(cè)量值并降低易受 EMI 影響的設(shè)備所受的干擾。例如,為了避免在 AM 無線頻段內(nèi)產(chǎn)生干擾,汽車 DC/DC 穩(wěn)壓器通常使用外部電阻將自由運(yùn)行的開關(guān)頻率設(shè)置為 2.1 MHz(容差為 5%-10%)。為了在 1.6 MHz 的最大 AM 頻段中以足夠的裕度運(yùn)行,合理的方法是在 100kHz 至 150kHz 的范圍內(nèi)使用 Df 進(jìn)行中心擴(kuò)頻調(diào)制,可避免對(duì)穩(wěn)壓器輸出電壓紋波幅值和效率性能造成過大干擾。
確定 Df 后,優(yōu)化 EMI 性能的附加自由度取決于所選調(diào)制頻率。根據(jù)圖 4,調(diào)制系數(shù) m 應(yīng)具備一個(gè)適宜的中間值,大到可提供 EMI 衰減,同時(shí)小到 RBW 帶通濾波器的時(shí)域效應(yīng)不適用。具體而言,如果 fm 過低,瞬時(shí)干擾信號(hào)頻率處于 RBW 濾波器響應(yīng)時(shí)間內(nèi)的時(shí)間間隔會(huì)增大。信號(hào)長時(shí)間以未調(diào)制狀態(tài)出現(xiàn)在測(cè)量窗口中,可以有效測(cè)量未調(diào)制信號(hào)的幅值。這種短期時(shí)域效應(yīng)同樣應(yīng)用于易受 EMI 干擾的電路及其敏感頻段。
因此,在規(guī)定頻率范圍內(nèi)使用指定 EMI 測(cè)量設(shè)置時(shí),為了正確估計(jì)擴(kuò)頻技術(shù)的影響,務(wù)必考慮時(shí)域特性。例如,針對(duì)汽車應(yīng)用的國際無線電干擾特別委員會(huì) (CISPR) 25 等規(guī)定要求,在 150kHz 至 30MHz 以及 30MHz 至 1GHz 的頻段進(jìn)行測(cè)量時(shí),RBW 設(shè)置應(yīng)分別為 9kHz 和 120kHz。按照經(jīng)驗(yàn)法則,如果將 fm 設(shè)置為與要求的 RBW 相近,則 EMI 接收器能夠獨(dú)立測(cè)量各個(gè)邊帶諧波,使測(cè)量結(jié)果與預(yù)期計(jì)算值相符。
實(shí)踐案例研究
圖 5 為使用兩個(gè)雙相可堆疊控制器的四相同步降壓穩(wěn)壓器電路 [17] 示意圖??刂破鞑捎枚喾N功能降低 EMI,包括恒定開關(guān)頻率操作、外部時(shí)鐘同步以及通過分離各電源開關(guān)的柵極驅(qū)動(dòng)輸出實(shí)現(xiàn)開關(guān)節(jié)點(diǎn)整形(轉(zhuǎn)換率控制)。
控制器工作時(shí)使用的電阻可調(diào)節(jié)開關(guān)頻率高達(dá) 2.2MHz,進(jìn)行外部同步后可達(dá) 2.5MHz。SSFM 可通過以下三種方法進(jìn)行配置:
● 使用控制器的外部同步 (SYNCIN) 輸入,施加采用所需調(diào)制技術(shù)的頻率信號(hào)。
● 通過電阻將調(diào)制信號(hào)與 RT 引腳耦合。
● 使用 DITH 引腳上的電容設(shè)置調(diào)制頻率,然后使用內(nèi)置的 ±5% 三角波擴(kuò)頻(抖動(dòng))函數(shù)。
圖 5:采用三角波擴(kuò)頻調(diào)制的四相同步降壓穩(wěn)壓器示意圖
給定的標(biāo)稱開關(guān)頻率為 2.1MHz,使用集成擴(kuò)頻功能時(shí)的頻率偏差 Δf 為 5% 或 105 kHz。EMI 接收器使用頻率為 9kHz 的 RBW 濾波器,在 150kHz 至 30MHz 的范圍內(nèi)進(jìn)行測(cè)量。頻譜分析儀中的 EMI 濾波器帶寬通常設(shè)定為 -6dB、具有四極并且波形接近高斯形狀 [16],因此應(yīng)用校正因數(shù)后,9kHz RBW 濾波器的 -3dB 有效帶寬認(rèn)定為約 6kHz?;谂c圖 4 相似的優(yōu)化曲線,使用公式 5 計(jì)算歸一化分辨率,可得出優(yōu)化的調(diào)制系數(shù)約為 10:
此后,通過公式 6 推導(dǎo)出所需的調(diào)制頻率:
圖 6 顯示的是啟用和禁用擴(kuò)頻后的開關(guān)節(jié)點(diǎn)電壓波形(使用圖 5 中的穩(wěn)壓器測(cè)量)。圖 6b 中的波形范圍恒定不變,展示開關(guān)頻率的變化情況。
圖 6:禁用 (a) 和啟用 (b) 擴(kuò)頻后的開關(guān)節(jié)點(diǎn)電壓波形 (VIN = 13.5 V,VOUT = 5 V,IOUT = 20 A)
圖 7 所示為在 10 kHz 處設(shè)置三角波調(diào)制后,在 150kHz 至 30MHz 的范圍內(nèi)測(cè)得的圖 5 中穩(wěn)壓器的傳導(dǎo)輻射。使用 Rohde & Schwarz 的頻譜分析儀,所得檢測(cè)器掃描結(jié)果的峰值和平均值分別以黃色和藍(lán)色表示。測(cè)量結(jié)果符合 CISPR 25 5 類 的要求。紅色的限值線對(duì)應(yīng) CISPR 25 5 類的峰值限值和平均限值(峰值限值通常比平均限值高出 20dB)。
圖 8:禁用 (a) 和啟用 (b) 擴(kuò)頻后,CISPR 25 5 類的傳導(dǎo)輻射結(jié)果(150kHz 至 30MHz)
總結(jié)
對(duì)于較為擁擠的電磁波譜,開關(guān)電源是導(dǎo)致電磁環(huán)境惡化的關(guān)鍵因素。擴(kuò)頻技術(shù)改變傳導(dǎo)和輻射干擾功率譜的形狀,降低峰值輻射水平,從而符合國際 EMC 規(guī)定的要求。選用經(jīng)過優(yōu)化的調(diào)制頻率可實(shí)現(xiàn)一種系統(tǒng)級(jí)解決方案,其封裝和體積更小,同時(shí)降低固有成本并提升功率密度。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級(jí)電容的“外衣”,看看超級(jí)電容“超級(jí)”在哪兒
- DigiKey 誠邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池
歐勝
耦合技術(shù)
排電阻
排母連接器
排針連接器
片狀電感
偏光片
偏轉(zhuǎn)線圈
頻率測(cè)量儀
頻率器件
頻譜測(cè)試儀
平板電腦