隔離式DC/DC電路的共模噪聲抑制方法
發(fā)布時(shí)間:2021-04-09 責(zé)任編輯:wenwei
【導(dǎo)讀】近來(lái),業(yè)界對(duì)于隔離式 DC-DC 穩(wěn)壓器中高頻變壓器的性能要求愈發(fā)嚴(yán)苛,尤其是在抗電磁干擾 (EMI) 方面。在本系列文章的第 7 部分[1-7] 中,我們?cè)敿?xì)探討了隔離式反激穩(wěn)壓器中共模 (CM) 噪聲的主要來(lái)源和傳播路徑。
高瞬態(tài)電壓 (dv/dt) 開(kāi)關(guān)節(jié)點(diǎn)是共模噪聲的主要來(lái)源,而變壓器的繞組間分布電容則是共模噪聲的主要耦合路徑。在第 7 部分中,我們?cè)诤?jiǎn)單方便的雙電容變壓器模型基礎(chǔ)上,采用共模噪聲等效電路來(lái)模擬流經(jīng)變壓器電容的位移電流。在此期間,僅需使用一個(gè)信號(hào)發(fā)生器和一個(gè)示波器即可提取寄生電容并確定變壓器共模噪聲性能的特征,而無(wú)需進(jìn)行在線(xiàn)測(cè)試。
在第 8 部分,我們將探討隔離式 DC/DC 電路的共模噪聲抑制方法。工作在高輸入電壓下的轉(zhuǎn)換器(例如,電動(dòng)汽車(chē)車(chē)載充電系統(tǒng)、數(shù)據(jù)中心電源系統(tǒng)和射頻功放電源中的相移式全橋轉(zhuǎn)換器[8] 和 LLC 串聯(lián)諧振轉(zhuǎn)換器[9])會(huì)產(chǎn)生較大的共模電流。在采用氮化鎵開(kāi)關(guān)器件時(shí),這種情況更為明顯,因?yàn)榇祟?lèi)器件的開(kāi)關(guān)速度 dv/dt 高于硅材質(zhì)的同類(lèi)器件。
對(duì)于隔離式設(shè)計(jì),有多種抑制共模噪聲的方法,包括采用對(duì)稱(chēng)的電路布局、在初級(jí)側(cè)接地端與次級(jí)側(cè)接地端之間連接一個(gè)電容、加入屏蔽層、增加平衡電容、優(yōu)化變壓器繞組設(shè)計(jì)以及使用可調(diào)節(jié)共模噪聲消除輔助繞組。本文將以反激電路為重點(diǎn),逐一解讀這些方法。
對(duì)稱(chēng)式電路設(shè)計(jì)
在對(duì)稱(chēng)式拓?fù)浣Y(jié)構(gòu)中,與地之間形成互補(bǔ)電勢(shì)的開(kāi)關(guān)節(jié)點(diǎn)成對(duì)出現(xiàn)。如果關(guān)聯(lián)寄生電容相同,則產(chǎn)生的共模位移電流基本可以相互抵消。圖 1a 為雙開(kāi)關(guān)正激轉(zhuǎn)換器(例如德州儀器 (TI) 的 LM5015)的原理圖[10,11]。圖 1b 為采用分立式初級(jí)側(cè)和次級(jí)側(cè)繞組的反激轉(zhuǎn)換器。這兩種轉(zhuǎn)換器的初級(jí)側(cè)電路均采用對(duì)稱(chēng)式設(shè)計(jì),具有異相電壓開(kāi)關(guān)波形(SW1 和 SW2),可產(chǎn)生相反極性的共模電流,從而降低總共模噪聲。
圖 1:平衡繞組拓?fù)浣Y(jié)構(gòu),采用對(duì)稱(chēng)式初級(jí)側(cè)電路和等幅異相 dv/dt 開(kāi)關(guān)波形,具有更低共模噪聲:(a) 雙開(kāi)關(guān)正激轉(zhuǎn)換器;(b) 采用分立式初級(jí)和次級(jí)繞組的反激轉(zhuǎn)換器
圖 1a 為雙開(kāi)關(guān)正激轉(zhuǎn)換器的拓?fù)浣Y(jié)構(gòu),盡管這種結(jié)構(gòu)早已為人所熟知,但其在共模噪聲抑制方面的優(yōu)勢(shì)卻并未得到充分重視。圖 1b 為平衡繞組反激轉(zhuǎn)換器,其次級(jí)繞組同樣采用對(duì)稱(chēng)式設(shè)計(jì)。分立式繞組通??梢越诲e(cuò)纏繞,以降低漏電感。這種電路的主要缺點(diǎn)是需要一個(gè)以 SW2 為基準(zhǔn)點(diǎn)的浮動(dòng)?xùn)艠O驅(qū)動(dòng)器。
對(duì)于單開(kāi)關(guān)正激轉(zhuǎn)換器和 LLC 諧振轉(zhuǎn)換器拓?fù)?,也可以采用?lèi)似的對(duì)稱(chēng)式平衡繞組設(shè)計(jì),如圖 2 所示。改進(jìn)后的對(duì)稱(chēng)電路需要額外增加一些元件,例如正激轉(zhuǎn)換器中的浮動(dòng)?xùn)艠O驅(qū)動(dòng)器和 LLC 諧振電路中的附加開(kāi)關(guān),并且只有在變壓器的物理繞組結(jié)構(gòu)產(chǎn)生對(duì)稱(chēng)的寄生電容時(shí)才會(huì)產(chǎn)生共模衰減的效果。因此通常情況下,需要采用其他方法來(lái)抑制共模噪聲,并使用傳統(tǒng)的隔離式拓?fù)潆娐贰?/div>
圖 2:對(duì)單開(kāi)關(guān)正激轉(zhuǎn)換器 (a) 和 LLC 諧振轉(zhuǎn)換器 (b) 采用對(duì)稱(chēng)式初級(jí)側(cè)繞組設(shè)計(jì)
在初級(jí)地與次級(jí)地之間連接一個(gè)電容
在三線(xiàn) AC-DC 應(yīng)用中,通常會(huì)在 EMI 輸入濾波器中通過(guò)一個(gè) Y 電容將火線(xiàn)和零線(xiàn)連接到機(jī)箱地,用以衰減共模噪聲。但在雙線(xiàn) DC-DC 系統(tǒng)中,由于沒(méi)有機(jī)箱地連接點(diǎn),因此無(wú)法連接 Y 電容。在這類(lèi)系統(tǒng)中,可以在初級(jí)側(cè)接地端 (P-GND) 與次級(jí)側(cè)接地端 (S-GND) 之間連接一個(gè)替代電容,將傳播到次級(jí)側(cè)的共模電流分流回初級(jí)側(cè)。
請(qǐng)參見(jiàn)第 7 部分圖 1 中的 CZ 電容。該元件是一種安全級(jí)電容,額定電壓為 1 kV 或更高,遠(yuǎn)高于所需的隔離電壓規(guī)格。然而這種電容一旦在故障狀況下出現(xiàn)短路,就會(huì)大大影響電流隔離效果。此外,如果 S-GND 連接的共模電壓擺幅相對(duì)于初級(jí)側(cè)過(guò)大(例如在高側(cè)柵極驅(qū)動(dòng)器偏置電源應(yīng)用中),電容傳導(dǎo)的電流就會(huì)過(guò)大。同時(shí),如果 DC-DC 級(jí)的前端是一個(gè) AC-DC 前端整流器,則該電容可能會(huì)傳導(dǎo)工頻泄漏電流,這在實(shí)際應(yīng)用中可能是不允許的,也是受到監(jiān)管要求限制的[12-15]。
共模噪聲的平衡與消除方法
平衡方法分為變壓器內(nèi)部平衡和外部平衡,可以降低與變壓器繞組電容相關(guān)的共模噪聲。內(nèi)部平衡方法包括應(yīng)用屏蔽層[16-18]、優(yōu)化繞組設(shè)計(jì)以及使用噪聲消除繞組。而外部平衡方法最常見(jiàn)的是在所選初級(jí)和次級(jí)繞組端子之間加入一個(gè)平衡電容[12]。
屏蔽
屏蔽方法通過(guò)插入導(dǎo)線(xiàn)或金屬箔屏蔽層來(lái)降低流經(jīng)繞組間電容的位移電流,從而阻止變壓器初級(jí)側(cè)繞組與次級(jí)側(cè)繞組之間的近場(chǎng)耦合。
例如,圖 3a 是一個(gè)反激轉(zhuǎn)換器,其初級(jí)側(cè)與次級(jí)側(cè)之間加入了一個(gè)傳統(tǒng)的單匝金屬箔屏蔽繞組。圖 3b 是 RM 型磁芯的示意圖,磁芯配有帶氣隙的中柱和垂直放置的繞組。在這半個(gè)繞組窗口中,共有兩個(gè)串聯(lián)的初級(jí)層 (2 x 12T)、一個(gè)次級(jí)層 (1 x 8T) 和一個(gè)屏蔽層。繞組采用非交錯(cuò)式分層布局,分為 P1、P2、SH1 和 S1 四層。圖中還顯示了繞組層間寄生電容。
圖 3:(a) 反激轉(zhuǎn)換器,其初級(jí)層與次級(jí)層之間帶有傳統(tǒng)的金屬箔靜電屏蔽繞組,該屏蔽層連接到 P-GND;(b) 變壓器繞組窗口內(nèi)的繞組層結(jié)構(gòu)
在初級(jí)層 P2 與次級(jí)層 S1 之間,加入了一個(gè)單屏蔽層 SH1。該屏蔽層通常連接回初級(jí)側(cè)電路中的靜態(tài)電位點(diǎn),例如圖 3 所示的本地 P-GND 或輸入電容的正極端子,即靜態(tài)交流節(jié)點(diǎn)。這樣可以阻止 P2 和 S1 之間的電耦合,并消除 P2 與 S1 之間的位移電流。
加入屏蔽層后,ipsh 將經(jīng)由屏蔽層返回 P-GND,而不是流經(jīng)輸出端而返回機(jī)箱地。但是,屏蔽層與相鄰次級(jí)繞組之間的電容依然存在。由于單匝屏蔽繞組與次級(jí)繞組的感應(yīng)電壓存在差異(單匝次級(jí)繞組除外),因此在屏蔽層與次級(jí)繞組之間必然存在共模電流??筛挠幂o助繞組的抽頭來(lái)驅(qū)動(dòng)屏蔽繞組,使屏蔽繞組的平均電壓與次級(jí)繞組的平均電壓相符,以實(shí)現(xiàn)共模平衡[18]。
注意,由于磁芯采用高介電常數(shù)材料,圖 3 中 P1 層和 S1 層之間會(huì)存在耦合。所以,盡管單屏蔽層有助于減弱共模噪聲,但并不能徹底消除。此外,還有一個(gè)缺點(diǎn)是,隨著初級(jí)側(cè)與次級(jí)側(cè)間邊界數(shù)量的增加,需要的屏蔽層也越來(lái)越多。重要的是,屏蔽層會(huì)增大繞組之間的空間,從而導(dǎo)致漏電感增加。通常而言,應(yīng)盡可能減小銅箔屏蔽層的厚度,以減少因鄰近效應(yīng)引起的渦流損耗。在高開(kāi)關(guān)頻率下,屏蔽層中的損耗會(huì)變得過(guò)大,而且屏蔽層也會(huì)使反射到開(kāi)關(guān)節(jié)點(diǎn)的總寄生電容增大。
平衡電容的值與位置
圖 4a 為帶初級(jí)側(cè)、次級(jí)側(cè)和輔助變壓器繞組的反激轉(zhuǎn)換器的原理圖。NPS 和 NAUX 分別代表初級(jí)側(cè)與次級(jí)側(cè)繞組匝數(shù)比以及初級(jí)側(cè)與輔助繞組匝數(shù)比。對(duì)于初級(jí)側(cè)繞組與輔助繞組而言,由于電流僅在初級(jí)側(cè)流動(dòng),對(duì)共模噪聲不產(chǎn)生影響,因此不考慮這兩者之間的耦合。在第 7 部分中我們?cè)懻撨^(guò),通過(guò)兩個(gè) 4 電容電路即可對(duì)初級(jí)側(cè)繞組與次級(jí)側(cè)繞組之間以及輔助繞組與次級(jí)側(cè)繞組之間的耦合進(jìn)行建模(如圖 4b 所示)。
圖 4: (a) 帶輔助繞組的反激轉(zhuǎn)換器;(b) 三繞組反激變壓器的集總共模寄生電容模型;(c) 使用雙電容變壓器模型的共模噪聲等效電路
如果輸入電容對(duì)共模噪聲呈現(xiàn)低阻抗特性,則初級(jí)側(cè)繞組的端子 A 與 P-GND 之間短路??梢允褂煤?jiǎn)化的雙電容變壓器模型,再以 ZSE 模擬 S-GND 與大地之間的電容耦合,最終的共模噪聲等效電路模型見(jiàn)圖 4c(有關(guān)更多相關(guān)信息和描述,請(qǐng)參見(jiàn)第 7 部分)。
公式 1 用于計(jì)算線(xiàn)路阻抗穩(wěn)定網(wǎng)絡(luò) (LISN) 中的共模噪聲電壓。從中可以看出,降低電容 CBD 可以使噪聲電壓降低。
公式 2 是 CBD 的理論表達(dá)式,該值可使用第 7 部分介紹的方法基于公式 3 進(jìn)行計(jì)算:
可以通過(guò)增大公式 2 中各負(fù)項(xiàng)的值,將 CBD 平衡為零[13]。最簡(jiǎn)單的方法是在初級(jí)側(cè)和次級(jí)側(cè)間變壓器端子 A 和 C 之間的 C3 上并聯(lián)一個(gè)電容。這一外部平衡電容的值為 CEXT = NPSCBD。
同樣,如果 CBD 為負(fù)值(VAD 和 VAB 電壓異相),則在端子 B 與 D 之間的 C4 上并聯(lián)一個(gè)等于 |CBD| 的平衡電容,可實(shí)現(xiàn)平衡。注意,根據(jù)公式 3,如果測(cè)得的 VAD 為零,則 CBD 也相當(dāng)于零,基本消除了通過(guò)變壓器的共模噪聲。這是非常方便的測(cè)試變壓器是否平衡的手段。
繞組設(shè)計(jì)
除了使用平衡電容外,還可以通過(guò)調(diào)整變壓器繞組層的位置,來(lái)優(yōu)化共模平衡。根據(jù)成對(duì)繞組層的設(shè)計(jì)理念[12-15],變壓器初級(jí)側(cè)和次級(jí)側(cè)的層具有相似的 dv/dt,因此,這些層的交錯(cuò)重疊不會(huì)產(chǎn)生共模噪聲。繞組間電容兩端的平均電壓具有相似的幅值和極性,也可以最大程度減小甚至消除流經(jīng)電容的共模電流。
一個(gè)最基本的原則就是,確保相鄰的初級(jí)側(cè)繞組層與次級(jí)側(cè)繞組層具有相似的電壓分布。如果繞組間寄生電容均勻分布于兩個(gè)成對(duì)繞組層之間,可以使電容的 dv/dt 保持為零,這樣便不會(huì)產(chǎn)生共模電流。
以圖 4a 的反激轉(zhuǎn)換器為例,其變壓器為交錯(cuò)式三繞組(初級(jí)側(cè)、次級(jí)側(cè)、輔助)變壓器。盡管交錯(cuò)式設(shè)計(jì)會(huì)增大繞組間電容,但出于降低漏電感和鄰近效應(yīng)損耗的考慮,必須采用這種設(shè)計(jì)。圖 5a 是反激變壓器的半個(gè)繞組窗口,該變壓器包含三個(gè)串聯(lián)初級(jí)層 (3 x 12T)、兩個(gè)并聯(lián)次級(jí)層 (2 x 9T) 和一個(gè)輔助/偏置繞組層 (1 x 15T)。
圖 5: (a) 采用夾層繞組層結(jié)構(gòu)的反激變壓器;(b) 繞組窗口內(nèi)各繞組層的電壓分布
圖 5b 為在電壓沿繞組線(xiàn)性分布情況下的繞組電壓分布圖。為最大程度降低共模噪聲,應(yīng)使初級(jí)側(cè)繞組層與次級(jí)側(cè)繞組層之間相鄰繞組層的平均電壓差達(dá)到最低。因此如圖 5a 所示,將交錯(cuò)繞組層的排列順序設(shè)計(jì)為 S1-P1-S2-AUX-P2-P3。
采用如圖 5a 所示的端子連接時(shí),P1 與 S1 或 S2 之間的平均電壓差最低。如圖 5a 所示,P1 始于 VIN(靜態(tài)節(jié)點(diǎn)),與兩個(gè)并聯(lián)次級(jí)層 S1 和 S2 相鄰。與之類(lèi)似,AUX 繞組與 S2 層相鄰,因?yàn)?AUX 與 S2 之間的電壓差小于 S2 與 P2 或 P3 之間的電壓差。由于 AUX 與 P2 繞組均位于初級(jí)側(cè),因此兩者之間的電壓差不會(huì)產(chǎn)生共模噪聲。兩者之間的位移電流同樣在轉(zhuǎn)換器初級(jí)側(cè)流動(dòng),不會(huì)被 LISN 視為 EMI。相反,如果采用 P1-S1-P2-S2-AUX-P3 這種完全交錯(cuò)的繞組結(jié)構(gòu),由于 S1 與 P2 以及 P2 與 S2 這兩對(duì)繞組層之間的平均電壓差增大,共模噪聲將明顯增強(qiáng)。
可調(diào)節(jié)噪聲消除輔助繞組
圖 6 中的 AdjAUX 是一個(gè)可調(diào)節(jié)噪聲消除輔助繞組層,纏繞在次級(jí)層 S1 的外側(cè),用以平衡繞組層內(nèi)未完全消除的共模噪聲[13,14]。AdjAUX 的一個(gè)端子連接到 P-GND,另一個(gè)端子處于懸浮狀態(tài)。
圖 6: (a) 在外層增加可調(diào)節(jié)輔助繞組用以消除共模噪聲的原理圖;(b)繞組排列情況;(c) 電壓和電流分布
由于 AdjAUX 與 S1 之間的電壓差為負(fù)值,因此位移共模電流從 S1 流向 AdjAUX 繞組,再流回初級(jí)側(cè)。由于 P1 與 S1、P1 與 S2 以及 AUX 與 S2 層之間的電壓差為正值(本例中 P1 和 AUX 的匝數(shù)多于 S1 和 S2 的匝數(shù)),因此這樣有助于消除從 P1 流向 S1 和 S2 以及從 AUX 流向 S2 的位移共模電流。如圖 6b 所示,AdjAUX 繞組位于變壓器繞組的外層,因此可以方便地通過(guò)調(diào)整匝數(shù)來(lái)有效消除噪聲。
如圖 6c 所示,當(dāng) AdjAUX 繞組始于繞組窗口的頂部時(shí),AdjAUX 與 S1 層之間的電壓差最大,需要較少匝數(shù)來(lái)達(dá)到消除噪聲的效果,而如果 AdjAUX 繞組位于窗口底部,則需要的匝數(shù)就會(huì)更多。
由于 AdjAUX 繞組不靠近氣隙,會(huì)產(chǎn)生零磁場(chǎng),因而沒(méi)有渦流功率損耗。這樣,變壓器交流繞組損耗低于采用傳統(tǒng)屏蔽層時(shí)的損耗。同時(shí),由于繞組層之間沒(méi)有屏蔽層,繞組間的互耦增高,使得漏電感降低[18]。最后,可以結(jié)合第 7 部分介紹的變壓器平衡檢測(cè)技術(shù),來(lái)方便地設(shè)計(jì) AdjAUX 繞組層,無(wú)需任何在線(xiàn)測(cè)試。
總結(jié)
共模噪聲是高頻隔離式 DC/DC 轉(zhuǎn)換器設(shè)計(jì)中需要重點(diǎn)關(guān)注的問(wèn)題。為了提高功率密度,設(shè)計(jì)師們往往會(huì)考慮增大開(kāi)關(guān)頻率。而隨著開(kāi)關(guān)頻率的增大,初級(jí)側(cè)開(kāi)關(guān)節(jié)點(diǎn)的高 dv/dt 以及通過(guò)變壓器繞組間電容的相關(guān)共模干擾已經(jīng)給系統(tǒng)帶來(lái)不利影響。要降低共模噪聲,可以采用對(duì)稱(chēng)式拓?fù)湓O(shè)計(jì)、加入屏蔽層以及平衡電容等方法。在進(jìn)行繞組設(shè)計(jì)時(shí),也可以通過(guò)正確布置變壓器層以及在繞組層端子與電路節(jié)點(diǎn)間選擇最優(yōu)的連接,來(lái)達(dá)到降噪的目的。此外,在變壓器外側(cè)纏繞輔助的噪聲消除繞組也可以平衡共模噪聲。對(duì)于某些拓?fù)浣Y(jié)構(gòu),可以單獨(dú)這些方法,而為了滿(mǎn)足規(guī)范要求并解決復(fù)雜的共模噪聲問(wèn)題,也可以發(fā)揮這些方法的組合優(yōu)勢(shì),以達(dá)到提高降噪效果的目的。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來(lái)電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車(chē)應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車(chē)載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開(kāi)”超級(jí)電容的“外衣”,看看超級(jí)電容“超級(jí)”在哪兒
- DigiKey 誠(chéng)邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國(guó)電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池
歐勝
耦合技術(shù)
排電阻
排母連接器
排針連接器
片狀電感
偏光片
偏轉(zhuǎn)線(xiàn)圈
頻率測(cè)量?jī)x
頻率器件
頻譜測(cè)試儀
平板電腦
友情鏈接(QQ:317243736)
我愛(ài)方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線(xiàn)檢測(cè) 芯片查詢(xún) 天天IC網(wǎng) 電子產(chǎn)品世界 無(wú)線(xiàn)通信模塊 控制工程網(wǎng) 電子開(kāi)發(fā)網(wǎng) 電子技術(shù)應(yīng)用 與非網(wǎng) 世紀(jì)電源網(wǎng) 21ic電子技術(shù)資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國(guó)工業(yè)電器網(wǎng) 連接器 礦山設(shè)備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購(gòu)網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動(dòng)化設(shè)備 企業(yè)查詢(xún) 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標(biāo)網(wǎng) 塑料機(jī)械網(wǎng) 農(nóng)業(yè)機(jī)械 中國(guó)IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗(yàn)箱
?
關(guān)閉
?
關(guān)閉