你的位置:首頁 > 傳感技術(shù) > 正文

電容感應(yīng)式與毫米波雷達(dá),誰能挑起三維觸控的大梁?

發(fā)布時間:2016-10-19 來源:李一雷 責(zé)任編輯:wenwei

【導(dǎo)讀】目前三維觸摸屏技術(shù)尚處于探索階段?,F(xiàn)在最有希望商用的三維觸摸屏技術(shù)有兩種,一種基于毫米波雷達(dá),另一種基于電容感應(yīng)。隨著電路技術(shù)的發(fā)展,即使微小的變化可以由高精度模擬放大器檢測到,因此電容傳感式三維觸控在未來的前景非常光明。那么它能獨(dú)自挑起三維觸控的大梁嗎?一起來看看吧!
 
基于毫米波雷達(dá)技術(shù)的三維觸摸技術(shù)以Google的Project Soli為代表。今年五月份,Google正式發(fā)布了代號為Project Soli的三維觸控模組。那么,Project Soli的毫米波雷達(dá)是如何實(shí)現(xiàn)三維觸控的呢?首先我們要清楚雷達(dá)的原理。大家一定都看到過探照燈:在漆黑的天空中,探照燈的光束方向上的物體位置可以被看得一清二楚。探照燈通過不停地旋轉(zhuǎn)改變光束照射方向,于是整個天空中所有方向上物體的位置就可以被一一探知。雷達(dá)也是一樣,不過雷達(dá)發(fā)射的不是肉眼可以看到的光束,而是電磁波波束,并通過檢測電路來探知波束方向上物體的位置。很顯然,雷達(dá)也可以用在三維觸控上:手就是需要檢測的物體,通過雷達(dá)我們可以實(shí)時監(jiān)控手在空間中的位置并讓設(shè)備做出相應(yīng)反應(yīng)從而實(shí)現(xiàn)三維的人機(jī)交互,這也是Project Soli的原理。
 
電容感應(yīng)式與毫米波雷達(dá),誰能挑起三維觸控的大梁?
 
探照燈通過改變光束方向來探測目標(biāo)(左上),雷達(dá)通過改變波束方向來掃描目標(biāo)(右上),Project Soli利用和雷達(dá)原理來探測手的位置從而實(shí)現(xiàn)三維觸控(下)
 
那么什么是毫米波雷達(dá)呢?它與電視里出現(xiàn)的那種巨大的雷達(dá)有什么區(qū)別呢?原來,雷達(dá)的分辨率和它發(fā)射電磁波的波長有關(guān),發(fā)射的電磁波波長越短則分辨率越好,也即對物體探測位置越精確。但是,電磁波波長越短則在空氣中的衰減會越大,因此如果物體距離雷達(dá)很遠(yuǎn)就會檢測不到。因此物體探測精度和探測距離是一對矛盾。傳統(tǒng)軍用和警用雷達(dá)使用的是微波波段,因?yàn)閭鹘y(tǒng)雷達(dá)需要檢測的物體通常尺寸很大,微波波段能做到大約10cm級別的分辨精度已經(jīng)很夠用了;
 
另一方面?zhèn)鹘y(tǒng)雷達(dá)需要有足夠的探測距離才能滿足使用需求。然而,10cm級別的分辨精度對于三維觸控來說完全不夠用。另一方面,三維觸控所需要檢測的距離很短,通常手距離觸摸屏的距離不會超過20cm。最后,三維觸控模組的體積必須足夠小。因此,Project Soli使用了波長為毫米數(shù)量級的毫米波雷達(dá),理論上可以實(shí)現(xiàn)毫米級別的分辨精度。該雷達(dá)可以集成到硬幣大小的芯片中,從而可以安裝在各類設(shè)備上。
 
下圖是Project Soli使用的毫米波雷達(dá)傳感芯片。芯片大小約為8mm x 10mm,上面白色的小點(diǎn)應(yīng)當(dāng)是用來把芯片固定到主板上的焊錫球(bump)。芯片上還有天線陣列(綠色框內(nèi))用來實(shí)現(xiàn)波束成型。根據(jù)天線的大小我們可以估計出Project Soli使用的毫米波雷達(dá)波長大約在2mm-5mm之間。
 
電容感應(yīng)式與毫米波雷達(dá),誰能挑起三維觸控的大梁?
 
毫米波雷達(dá)用來實(shí)現(xiàn)三維觸控可以達(dá)到很高的精度。然而,它的劣勢在于功耗太大。目前即使最領(lǐng)先的毫米波雷達(dá)芯片也至少需要100mW以上的功耗,因此用在移動設(shè)備上會導(dǎo)致電池很快就用完了。這樣一來,毫米波雷達(dá)觸控比較適合使用在電源不是問題的設(shè)備上,例如大型游戲機(jī)或者電視機(jī)上的三維觸控。
 
另一種非常有前景的三維觸控技術(shù)是電容感應(yīng)技術(shù)。毫米波雷達(dá)技術(shù)利用的是動態(tài)電磁波,而電容感應(yīng)技術(shù)利用的是靜電場。電容感應(yīng)型三維觸控技術(shù)是目前電容觸摸屏的增強(qiáng)版:電容觸摸屏可以感應(yīng)到與屏幕接觸的手的位置,而電容感應(yīng)式三維觸控技術(shù)則增強(qiáng)了感應(yīng)范圍,在手尚未接觸到屏幕時就能感應(yīng)到手在空間中的三維位置,從而實(shí)現(xiàn)三維觸控。
 
為了理解電容感應(yīng)式三維觸控的原理,我們不妨想象有許多熱傳感器組成的陣列,而傳感器陣列上方有一個火苗(熱源)。根據(jù)傳感器的相對溫度分布(即哪里溫度比較高,哪里溫度比較低)我們可以知道火苗在哪一個傳感器上方(即火苗的二維位置),根據(jù)傳感器的絕對溫度(即傳感器探測到的絕對溫度有多高)我們可以知道火苗離傳感器有多遠(yuǎn)(即火苗在空間中第三維的位置)。結(jié)合這兩條信息我們可以得到火苗在空間中的三維位置。
 
電容感應(yīng)式與毫米波雷達(dá),誰能挑起三維觸控的大梁?
 
熱傳感器陣列可以通過相對溫度分布和絕對溫度來判斷火苗在三維空間中的位置
 
電容傳感式三維觸控的原理也是這樣,只不過這里探測的不是火苗帶來的溫度改變而是手指帶來的靜電場改變。通過探測哪一個電容傳感器探測到的靜電場改變最大我們可以感應(yīng)到手指的二維位置,而通過電容傳感器探測到靜電場改變的絕對強(qiáng)度我們可以感應(yīng)到手指的第三維坐標(biāo),從而實(shí)現(xiàn)三維觸控。
 
電容傳感式三維觸控的優(yōu)勢在于傳感器的功耗可以遠(yuǎn)遠(yuǎn)小于毫米波雷達(dá)(大約僅僅是毫米波雷達(dá)的十分之一甚至更?。?,因此可以安裝在對功耗比較敏感的移動設(shè)備上。但是電容傳感也有自己的問題需要解決,就是傳感器之間的互相干擾。我們同樣拿熱傳感器感應(yīng)火苗位置來作類比?,F(xiàn)在我們假設(shè)除了火苗會發(fā)熱以外,熱傳感器自己也會發(fā)熱。
 
這樣一來,如果火苗離熱傳感器距離較遠(yuǎn),那么它帶來的溫度變化相對于熱傳感器自己的發(fā)熱可能微不足道,從而熱傳感器需要相當(dāng)高的探測精度才能根據(jù)溫度變化檢測到火苗的位置。電容傳感式三維觸控也是如此:電容傳感器之間的電場會互相耦合形成很大的電容,因此手指造成的靜電場變化需要精度非常高的探測器才能檢測到。好在隨著電路技術(shù)的發(fā)展,即使微小的變化可以由高精度模擬放大器檢測到,因此電容傳感式三維觸控在未來的前景非常光明。
 
目前在電容傳感式三維觸控已經(jīng)出現(xiàn)在微軟的pre-touch screen demo中,該demo可以實(shí)現(xiàn)離屏幕較近距離(1-2cm)的三維觸控。另一方面,不少頂尖高校的實(shí)驗(yàn)室也展示了基于電容傳感原理的三維觸控模塊。例如,普林斯頓大學(xué)由Naveen Verma教授領(lǐng)銜的團(tuán)隊(duì)成功地展示了基于薄膜電子的三維觸控(目前成立了SpaceTouch公司),有機(jī)會可以用在未來可彎曲屏幕上。
 
此外,UCLA由Frank Chang教授和Li Du博士帶領(lǐng)的Airtouch團(tuán)隊(duì)使用傳統(tǒng)低成本CMOS工藝制作的芯片配合普通手機(jī)觸摸屏已經(jīng)可以實(shí)現(xiàn)距離屏幕10cm范圍內(nèi)的三維觸控。該芯片最初于2015年在國際固態(tài)半導(dǎo)體會議上發(fā)表(ISSCC,全球芯片領(lǐng)域最高規(guī)格的會議,號稱芯片界的奧林匹克盛會),之后團(tuán)隊(duì)又乘熱打鐵將深度學(xué)習(xí)與三維觸控芯片結(jié)合在一起用于高精度三維手勢識別,并應(yīng)邀在2016年的自動設(shè)計會議(DAC,全球電子設(shè)計領(lǐng)域最高規(guī)格的會議之一)發(fā)表了最新成果。Airtouch芯片功耗僅2 mW(遠(yuǎn)遠(yuǎn)小于Google的毫米波雷達(dá)觸控方案),且與普通觸摸屏兼容,將來可以廣泛地應(yīng)用于手機(jī)等移動設(shè)備的三維觸控。
 
電容感應(yīng)式與毫米波雷達(dá),誰能挑起三維觸控的大梁?
 
結(jié)語
 
觸控技術(shù)經(jīng)歷數(shù)十年的發(fā)展,到今天已經(jīng)能夠超越傳統(tǒng)二維觸控而進(jìn)入三維觸控領(lǐng)域了。三維觸控會帶來人機(jī)交互方式的革新,可以用于游戲、AR/VR等等應(yīng)用中。目前較有希望商用的三維觸控方案包括毫米波雷達(dá)(Google Project Soli為代表)和電容感應(yīng)(UCLA Airtouch為代表)。我們可望在不久的將來就看到三維觸控走入千家萬戶,成為人機(jī)交互的基本方式。
 
(本文節(jié)選自矽說,原文作者李一雷,原標(biāo)題為《突破“二向箔”的束縛:三維觸控技術(shù)》)
 
 
 
推薦閱讀:

電源地與信號地原來是這種關(guān)系
FPGA和音頻處理器實(shí)現(xiàn)獨(dú)特工業(yè)應(yīng)用
FPGA與ASIC,誰將引領(lǐng)移動端人工智能潮流?
電容對超聲波,誰能解決指紋識別傳感器三大尷尬點(diǎn)?
減少PCB板電磁干擾的4個設(shè)計技巧



 
要采購傳感器么,點(diǎn)這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉