-
壓擺率為何會導致放大器輸出信號失真?
壓擺率限制原因和影響因素:放大器低頻極點是受輸入級的米勒補償電容影響,壓擺率是受到放大級米勒補償電容的影響。
2020-09-23
-
如何正確對放大器前端進行電平轉(zhuǎn)換?
目前,在轉(zhuǎn)換器領(lǐng)域風頭正盛的是 GSPS ADC—也稱 RF ADC。憑借市場上采樣速率如此高的轉(zhuǎn)換器,奈奎斯特頻率與五年前相比提高了 10 倍。關(guān)于使用 RF ADC 的優(yōu)勢,以及如何使用它們進行設計并以如此高的速率捕獲數(shù)據(jù),人們進行了大量的討論。
2020-09-21
-
如何使用Fly-buck為低電壓、低功耗工業(yè)應用供電
有些工業(yè)應用中包含分支電路,需要小型電源為跨隔離邊界的噪聲敏感型電路供電。在 PLC、數(shù)據(jù)采集以及測量設備等應用中,該隔離邊界可提供抗噪功能。需要這種隔離式電源的典型分支電路包括隔離式 RS-232 和 RS-485 通信通道、線路驅(qū)動器、隔離式放大器、傳感器以及 CAN 收發(fā)器。此外,我們在其它應用中也發(fā)現(xiàn)了類似的電源需求,它們需要隔離式電源為 IGBT 提供柵極驅(qū)動器電源,而且在一些醫(yī)療應用中也需要隔離技術(shù)來確保安全性。
2020-09-18
-
利用跨導放大器實現(xiàn)開發(fā)高輸出電流脈沖源
本文將繼續(xù)介紹另一款跨導放大器 — 電流模式放大器OPA615,并將介紹將其用于開發(fā)高輸出電流的電流脈沖源。對于本次實驗,將會使用鮮為人知的OPA615放大器。如果查看產(chǎn)品說明書,您就會發(fā)現(xiàn)這款放大器最初是作為模擬視頻功能的 DC 恢復功能開發(fā)的,幾年前被集成到更低功耗的更小外形封裝中。
2020-09-18
-
輕松構(gòu)建交流和直流數(shù)據(jù)采集信號鏈
模數(shù)轉(zhuǎn)換器(ADC)中的采樣會產(chǎn)生混疊和電容反沖問題,為此設計人員使用濾波器和驅(qū)動放大器來解決,但這又帶來了一系列相關(guān)挑戰(zhàn)。尤其是在中等帶寬應用中,實現(xiàn)精密直流和交流性能面臨挑戰(zhàn),設計人員最終不得不降低系統(tǒng)目標。
2020-09-14
-
精密運算放大器失調(diào)原因與解決方案
對于精密電子,放大電路必須滿足設計指標中的精度要求。設計這些放大器時所面臨的一個問題是:流入放大器輸入端的電流所產(chǎn)生的電壓失調(diào)。本文中,我們首先分析了產(chǎn)生失調(diào)的原因,并基于集成電阻網(wǎng)絡給出了相應的解決方案。
2020-09-11
-
放大器Vos失調(diào)電壓的產(chǎn)生與影響
放大器的失調(diào)電壓是工程師在直流耦合電路設計中,評估頻次極高的參數(shù),本篇通過一個案例介紹失調(diào)電壓的影響方式,以及探討產(chǎn)生原因。
2020-09-11
-
幾百伏電壓下也能進行低成本測量,這款放大器你中意嗎?
許多應用需要在高共模電壓存在的情況下進行差分測量,而有些測量電壓在幾百伏以上。在這些電壓下進行精確測量不但很難,而且成本高昂。但是 , AD8479 能夠輕松做到這一點。如AD8479數(shù)據(jù)手冊所述,電阻網(wǎng)絡在提供單位差分增益的同時,將非常大的共模電壓衰減了60倍。
2020-09-07
-
脈沖雷達用GaN MMIC功率放大器的電源管理
包含高度集成和高度復雜的高功率射頻(RF)GaN功率放大器(PA)的系統(tǒng),如脈沖雷達應用,對于當今的數(shù)字控制和管理系統(tǒng)來說是一個持續(xù)的挑戰(zhàn),以跟上這些不斷增長的水平、復雜。
2020-08-31
-
如何利用功率放大器實現(xiàn)功放記憶效應電路的設計?
功率放大器非線性特性產(chǎn)生的失真分量不恒定,例如三階或五階交調(diào)的幅度、相位會隨輸入信號幅度和帶寬的變化而改變。這種失真分量依賴于輸入信號幅度、帶寬的現(xiàn)象通常稱之為功率放大器的記憶效應。
2020-08-24
-
采用低成本的高速運算放大器在消費類電子中的應用
與典型的時鐘緩沖應用相比,消費類電子應用的工作頻率較低,需求較少,采用低成本的高速運算放大器(~100MHz帶寬)可以提供比傳統(tǒng)的時鐘緩沖器更具吸引力的替代方案。高速放大器比傳統(tǒng)的時鐘緩沖器更便宜,同時也能適應更多種類的設計配置。
2020-08-24
-
放大器電路的大信號帶寬遇瓶頸:如何解決壓擺率問題?
在技術(shù)支持過程中,常常遇到工程師質(zhì)疑放大器的增益帶寬積參數(shù)“摻水”啦?。?!設計中明明預留很大余量,但是電路的輸出波形依然出現(xiàn)失真的情況。其實,在交流信號調(diào)理電路的帶寬評估中,應該區(qū)分對待輸入信號是小信號,還是大信號。
2020-08-23
- 功率半導體驅(qū)動電源設計(一)綜述
- 借助集成高壓電阻隔離式放大器和調(diào)制器提高精度和性能
- 第 4 代碳化硅技術(shù):重新定義高功率應用的性能和耐久性
- 揭秘:48V系統(tǒng)如何撬動汽車收益杠桿
- 超級電容器如何有效加強備用電源和負載管理 (上)
- 電阻,電動力和功率耗散
- 意法半導體為數(shù)據(jù)中心和AI集群帶來更高性能的云光互連技術(shù)
- 利用Bluetooth?低功耗技術(shù)進行定位跟蹤
- 羅姆的EcoGaN?被村田制作所的AI服務器電源采用
- 泰克自動化接收器測試方案,提升PCIe測試驗證精度與效率
- 利用與硬件無關(guān)的方法簡化嵌入式系統(tǒng)設計:基本知識
- 電容電壓分隔器
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall