DDS器件產(chǎn)生高質(zhì)量波形:簡單、高效而靈活
發(fā)布時間:2020-03-17 來源:Brendan Cronin 責(zé)任編輯:wenwei
【導(dǎo)讀】直接數(shù)字頻率合成(DDS)技術(shù)用于產(chǎn)生和調(diào)節(jié)高質(zhì)量波形,廣泛用于醫(yī)學(xué)、工業(yè)、儀器儀表、通信、國防等眾多領(lǐng)域。本文將簡要介紹該技術(shù),說明其優(yōu)勢和不足,考察一些應(yīng)用示例,同時介紹一些有助于該技術(shù)推廣的新產(chǎn)品。
簡介
許多行業(yè)中一個關(guān)鍵的需求是精確產(chǎn)生、輕松操作并快速更改不同頻率、不同類型的波形。無論是寬帶收發(fā)器要求具有低相位噪聲和出色的無雜散動態(tài)性能的捷變頻率源,還是工業(yè)測量和控制系統(tǒng)需要穩(wěn)定的頻率激勵,快速、輕松、經(jīng)濟(jì)地產(chǎn)生可調(diào)波形并同時維持相位連續(xù)性的能力都是至關(guān)重要的一項設(shè)計標(biāo)準(zhǔn),而這正是直接數(shù)字頻率合成技術(shù)的優(yōu)勢所在。
頻率合成的任務(wù)
不斷增多的頻譜擁堵,加上對功耗更低、質(zhì)量更高的測量設(shè)備的永無止境的需求,這些因素都要求使用新的頻率范圍,要求更好地利用現(xiàn)有頻率范圍。結(jié)果,人們尋求對頻率產(chǎn)生進(jìn)行更好的控制,多數(shù)情況下,均是借助于頻率合成器. 這些器件利用一個給定頻率, fC,來產(chǎn)生一個相關(guān)的目標(biāo)頻率(和相位), fOUT. 其一般關(guān)系可以簡單地表示為:
fOUT = εx× fC
其中,比例因子εx, 有時也被稱為歸一化頻率.
該等式通常利用實數(shù)逐步逼近的算法實現(xiàn)。當(dāng)比例因子為有理數(shù)時,兩個相對質(zhì)數(shù)(輸出頻率和基準(zhǔn)頻率)之比將諧波相關(guān)。但在多數(shù)情況下,εx 可能屬于更廣泛的實數(shù)集,逼近過程一旦處于可接受的范圍之內(nèi)即會被截斷
直接數(shù)字頻率合成
頻率合成器的一種實用型實現(xiàn)方式是直接數(shù)字頻率合成 (DDFS), 通常簡稱為 直接數(shù)字合成 (DDS). 這種技術(shù)利用數(shù)字?jǐn)?shù)據(jù)處理來產(chǎn)生一個頻率和相位可調(diào)的輸出,該輸出與一個固定的頻率參考或時鐘源fC.相關(guān)。在DDS架構(gòu)中,參考或系統(tǒng)時鐘頻率由一個比例因子分頻來產(chǎn)生所需頻率,該比例因子由二進(jìn)制調(diào)諧字可編程控制。
簡言之,直接數(shù)字頻率合成器將一串時鐘脈沖轉(zhuǎn)換成一個模擬波形,通常為一個正弦波、三角波或方波。如圖1所示,其主要部分為:相位累加器(產(chǎn)生輸出波形相位角度的數(shù)據(jù)), 相數(shù)轉(zhuǎn)換器,(將上述相位數(shù)據(jù)轉(zhuǎn)換為瞬時輸出幅度數(shù)據(jù)),以及數(shù)模轉(zhuǎn)換器(DAC)(將該幅度數(shù)據(jù)轉(zhuǎn)換成采樣模擬數(shù)據(jù)點)
圖1.DDS系統(tǒng)的功能框圖。
對于正弦波輸出,相數(shù)轉(zhuǎn)換器通常為一個正弦查找表(圖2)。相位累加器以N為單位計數(shù),并根據(jù)以下等式產(chǎn)生一個相對于fC的頻率:
其中:
M為調(diào)諧字的分辨率(24至48位)
N為對應(yīng)于相位累加器輸出字最小增量相位變化的fC的脈沖數(shù).
圖2.典型的DDS架構(gòu)和信號路徑(帶DAC)。
由于更改N會立即改變輸出相位和頻率,因此,系統(tǒng)自身具有相位連續(xù),特點,這是許多應(yīng)用的關(guān)鍵屬性之一。無需環(huán)路建立時間,這與模擬系統(tǒng)不同,如鎖相環(huán) (PLL).
DAC通常為一個高性能電路,專門針對DDS內(nèi)核(相位累加器和相幅轉(zhuǎn)換器)而設(shè)計。多數(shù)情況下,結(jié)果形成的器件(通常為單芯片)一般稱為純DDS或C-DDS。
實際的DDS器件一般集成多個寄存器,以實現(xiàn)不同的頻率和相位調(diào)制方案。如相位寄存器,其存儲的相位內(nèi)容被加在相位累加器的輸出相位上。這樣,可以對應(yīng)于一個相位調(diào)諧字延遲輸出正弦波的相位。對于通信系統(tǒng)相位調(diào)制應(yīng)用,這非常有用。加法器電路的分辨率決定著相位調(diào)諧字的位數(shù),因此,也決定著延遲的分辨率。
在單個器件上集成一個DDS引擎和一個DAC既有優(yōu)點也有缺點,但是,無論集成與否,都需要一個DAC來產(chǎn)生純度超高的高品質(zhì)模擬信號。DAC將數(shù)字正弦輸出轉(zhuǎn)換為一個模擬正弦波,可能是單端,也可能是差分。一些關(guān)鍵要求是低相位噪聲、優(yōu)秀的寬帶(WB)和窄帶(NB)無雜散動態(tài)范圍 (SFDR)以及低功耗。如果是外部器件,則DAC必須足夠快以處理信號,因此,內(nèi)置并行端口的器件非常常見。
DDS與其他解決方案
其他產(chǎn)生頻率的方法包括模擬鎖相環(huán)(PLL),時鐘發(fā)生器和利用FPGA對DAC的輸出進(jìn)行動態(tài)編程。通過考察頻譜性能和功耗,可以對這些技術(shù)進(jìn)行簡單的比較,表1以定性方式展示了比較結(jié)果
表1.DDS與競爭技術(shù)——高級比較
鎖相環(huán)是一種反饋環(huán)路,其組成部分為:一個相位比較器, 一個除法器和一個壓控制振蕩器 (VCO). 相位比較器將基準(zhǔn)頻率與輸出頻率(通常是輸出頻率的N)分頻)進(jìn)行比較。相位比較器產(chǎn)生的誤差電壓用于調(diào)節(jié)VCO,從而輸出頻率。當(dāng)環(huán)路建立后,輸出將在頻率和/或相位上與參考頻率保持一種精確的關(guān)系。PLL長期以來一直被認(rèn)為是在特定頻帶范圍內(nèi)要求高保真度和穩(wěn)定信號的低相位噪聲和高無雜散動態(tài)范圍 (SFDR) 應(yīng)用的理想選擇.
由于PLL無法精確、快速地調(diào)諧頻率輸出和波形,而且響應(yīng)較慢,這限制了它們對于快速跳頻和部分頻移鍵控和相移鍵控應(yīng)用的適用性.
其他方案,包括集成DDS引擎的現(xiàn)場可編程門陣列 (FPGAs) ——配合現(xiàn)成DAC以合成輸出正弦波——雖然可以解決PLL的跳頻問題,但也存在自身的缺陷。主要系統(tǒng)缺陷包括較高的工作和接口功耗要求、成本較高、尺寸較大,而且系統(tǒng)開發(fā)人員還須考慮額外的軟件、硬件和存儲器問題。例如,利用現(xiàn)代FPGA中的DDS引擎選項,要產(chǎn)生動態(tài)范圍為60 dB的10 MHz輸出信號,需要多達(dá)72 kB的存儲器空間。另外,設(shè)計師需要接受并熟悉細(xì)微權(quán)衡和DDS內(nèi)核的架構(gòu)。
從實用角度來看(見表2),得益于CMOS工藝和現(xiàn)代數(shù)字設(shè)計技術(shù)的快速發(fā)展以及DAC拓?fù)浣Y(jié)構(gòu)的改進(jìn),DDS技術(shù)已經(jīng)能在廣泛的應(yīng)用中實現(xiàn)前所未有的低功耗、頻譜性能和成本水平。雖然純DDS產(chǎn)品不可能在性能和設(shè)計靈活性上達(dá)到高端DAC技術(shù)與FPGA相結(jié)合的水平,但DDS在尺寸、功耗、成本和簡單性方面的優(yōu)勢使其成為許多應(yīng)用的首要選擇。
表2.基準(zhǔn)分析小結(jié)——頻率產(chǎn)生技術(shù)(<50 MHz)
同時需要指出,由于DDS器件從根本上來說是用數(shù)字方法產(chǎn)生輸出波形,因此它可以簡化一些解決方案的架構(gòu),或者為對波形進(jìn)行數(shù)字化編程創(chuàng)造條件。盡管通常利用正弦波來解釋DDS的功能和工作原理,但利用現(xiàn)代DDS IC也可以輕松產(chǎn)生三角波或方波(時鐘)輸出,由此消除了前一種情況的查找表以及后一種情況的DAC的必要性,因為集成一個簡單而精確的比較器就夠了.
DDS的性能與限制
Images and Envelopes: Sin(x)/x Roll-Off
DAC的實際輸出不是連續(xù)的正弦波,而是帶有正弦時間包絡(luò)的一系列脈沖。對應(yīng)的頻譜是一系列圖像和混疊信號。圖像沿sin(x)/x 包絡(luò)分布(見圖3中的|幅度|曲線圖)。有必要進(jìn)行濾波,以抑制目標(biāo)頻帶之外的頻率,但是不能抑制通帶中出現(xiàn)的高階混疊(例如,因DAC非線性所致)
奈奎斯特準(zhǔn)則 要求,每個周期至少需要兩個采樣點才能重建所需輸出波形。鏡像響應(yīng)產(chǎn)生于采樣輸出頻率中 K fCLOCK × fOUT. 在本例中,其中 fCLOCK = 25 25 MHz且 fOUT = 5 MHz,第一和第二鏡頻出現(xiàn)在(見圖3)fCLOCK × fOUT, o即20 MHz和30 MHz。第三和第四鏡頻出現(xiàn)在45 MHz和55 MHz。注意,sin(x)/x零值出現(xiàn)在采樣頻率的倍數(shù)處。當(dāng)fOUT 大于奈奎斯特帶寬 (1/2 fCLOCK), 時,第一鏡頻將出現(xiàn)于奈奎斯特帶寬之內(nèi),發(fā)生混疊(例如,15 MHz的信號將向下混疊至10 MHz)。無法用傳統(tǒng)的奈奎斯特抗混疊濾波器從輸出中濾掉混疊鏡頻
圖3.DDS中的Sin(x)/x滾降。
在典型的DDS應(yīng)用中,利用一個低通濾波器來抑制輸出頻譜中鏡頻響應(yīng)的影響。為了使低通濾波器的截止頻率要求保持于合理水平,并使濾波器設(shè)計保持簡單,一種可行的做法是利用一個經(jīng)濟(jì)的低通輸出濾波器將fOUT 帶寬限制在fCLOCK頻率的40%左右.
任何給定鏡頻相對于基波的幅度可用sin(x)/x公式來計算。由于該函數(shù)隨頻率滾降,因此基本輸出的幅度將與輸出頻率成反比而降低;在DDS系統(tǒng)中,降低量為DC-奈奎斯特帶寬范圍的–3.92 dB。
第一鏡頻的幅度較大——基波的3 dB范圍內(nèi)。為了簡化DDS應(yīng)用的濾波要求,必須制定頻率計劃,并分析鏡頻和sin(x)/x幅度響應(yīng)在fOUT和fCLOCK目標(biāo)頻率下的頻譜要求。在線互動設(shè)計工具 支持ADI DDS產(chǎn)品系列,可以快速、輕松地仿真鏡像頻率大小,并允許用戶選擇鏡像位于目標(biāo)頻帶之外的頻率。更多有用信息,請參閱更多信息和有用的鏈接部分.
輸出頻譜中的其他不需要的頻率(如DAC的積分和微分線性誤差、與DAC相關(guān)的突波能量和時鐘饋通噪聲)不會遵循sin(x)/x滾降響應(yīng)。這些不需要的頻率將以諧波和雜散能量出現(xiàn)在輸出頻譜中的許多地方——但其幅度一般會遠(yuǎn)遠(yuǎn)低于鏡頻響應(yīng)。DDS器件的一般本底噪聲由基板噪聲、熱噪聲效應(yīng)、接地耦合和其他信號源耦合等因素累積組合決定。DDS器件的本底噪聲、性能雜散和抖動受到電路板布局、電源質(zhì)量以及——最重要的是——輸入?yún)⒖紩r鐘質(zhì)量的深刻影響。
抖動
完美時鐘源的邊沿將以精確的時間間隔發(fā)生,而該間隔永遠(yuǎn)都不會變化。當(dāng)然,這是不可能的;即使最好的振蕩器也是由不理想的元件構(gòu)成,具有噪聲等缺陷。優(yōu)質(zhì)的低相位噪聲晶體振蕩器的抖動為皮秒級,而且是從數(shù)百萬個時鐘邊沿累積起來的。導(dǎo)致抖動的因素有熱噪聲、振蕩器電路不穩(wěn)定以及電源、接地和輸出連接等帶來的外部干擾等,所有這些因素都會干擾振蕩器的時序特性。另外,振蕩器受外部磁場或電場以及附近發(fā)射器的射頻干擾的影響。振蕩器電路中,一個簡單的放大器、反相器或緩沖器也都會給信號帶來額外的抖動。
因此,選擇一個抖動低、邊沿陡的穩(wěn)定的參考時鐘振蕩器是至關(guān)重要的。較高頻率的基準(zhǔn)時鐘允許較大的過采樣,而且,通過分頻可以在一定程度上減輕抖動,因為對信號進(jìn)行分頻將在更長時期產(chǎn)生相同量的抖動,因而可以降低信號上的抖動的百分比。
噪聲——包括相位噪聲
采樣系統(tǒng)的噪聲取決于諸多因素,首要因素是參考時鐘抖動,這種抖動表現(xiàn)為基波信號上的相位噪聲。在DDS系統(tǒng)中,截斷相位寄存器輸出可能帶來因代碼而異的系統(tǒng)誤差。二進(jìn)制字不會導(dǎo)致截斷誤差。但對于非二進(jìn)制字,相位噪聲截斷誤差會在頻譜中產(chǎn)生雜散。雜散的頻率/幅度取決于代碼字。DAC的量化和線性誤差也會給系統(tǒng)帶來諧波噪聲。時域誤差(如欠沖/過沖和代碼錯誤)都會加重輸出信號的失真.
應(yīng)用
DDS應(yīng)用可以分為兩大類:
● 要求捷變頻率源以進(jìn)行數(shù)據(jù)編碼和調(diào)制應(yīng)用的通信和雷達(dá)系統(tǒng)
● 要求通用頻率合成功能以及可編程調(diào)諧、掃描和激勵能力的測量、工業(yè)和光學(xué)應(yīng)用
兩種情況下,都出現(xiàn)了一種走向更高頻譜純度(更低的相位噪聲和更高的無雜散動態(tài)范圍)的趨勢,同時還存在低功耗和小尺寸的要求,以適應(yīng)遠(yuǎn)程或電池供電設(shè)備的需求。
調(diào)制/數(shù)據(jù)編碼和同步中的DDS
DDS產(chǎn)品首先出現(xiàn)于雷達(dá)和軍事應(yīng)用之中,其部分特性的發(fā)展(性能的提升、成本和尺寸等)已使DDS技術(shù)在調(diào)制和數(shù)據(jù)編碼應(yīng)用中日漸盛行。本節(jié)將討論兩種數(shù)據(jù)編碼方案及其在DDS系統(tǒng)中的實現(xiàn)方式
圖4.二進(jìn)制FSK調(diào)制。
二進(jìn)制1和0表示為兩個不同的頻率,分別為f0和f1。這種編碼方案可以輕松在DDS器件中實現(xiàn)。代表輸出頻率的DDS頻率調(diào)諧字被改變,以從將發(fā)射的1和0產(chǎn)生f0和f1。在ADI純DDS產(chǎn)品系列中,至少有兩款器件AD9834和AD9838—另見附錄),用戶可以簡單地將兩個當(dāng)前FSK頻率調(diào)諧字編程進(jìn)IC的嵌入式頻率寄存器之中。要變換輸出頻率,則須用專用的引腳FSELECT選擇含有相應(yīng)調(diào)諧字的寄存器(見圖5)
圖5.利用AD9834或AD9838 DDS的調(diào)諧字選擇器實現(xiàn)FSK編碼。
相移鍵控(PSK)是另一種簡單的數(shù)據(jù)編碼形式。在PSK中,載波的頻率保持不變,通過改變發(fā)射信號的相位來傳遞信息??梢岳枚喾N方案來實現(xiàn)PSK。最簡單的方法通常稱為二進(jìn)制PSK(即BPSK),只采用兩個信號相位:0°(邏輯1)和180°(邏輯0)。各位的狀態(tài)取決于前一位的狀態(tài)。如果波的相位不變,則信號狀態(tài)將保持不變(低或高)。如果波的相位改變180°,即相位反轉(zhuǎn),則信號狀態(tài)將改變(低變?yōu)楦?,或高變?yōu)榈停SK編碼可以輕松在DDS產(chǎn)品中實現(xiàn),因為多數(shù)器件都有一個獨立的輸入寄存器(相位寄存器),可以加載相位值。該值被直接添加到載波的相位,而不改變其頻率。更改該寄存器的內(nèi)容將調(diào)制載波的相位,結(jié)果產(chǎn)生一個PSK輸出。對于要求高速調(diào)制的應(yīng)用,內(nèi)置相位寄存器對的AD9834和AD9838允許其PSELECT引腳上的信號在預(yù)加載的相位寄存器之間變換,以根據(jù)需要調(diào)制載波。
更復(fù)雜的PSK采用四個或八個波相位。這樣,每當(dāng)相位發(fā)生變化時,二進(jìn)制數(shù)據(jù)的傳輸速率將高于BPSK調(diào)制。在四相位調(diào)制 (正交 PSK),中,可能的相位角度為0°, +90°, −90°, 和 +180°;每次相位變換可能代表兩個信號因子AD9830, AD9831, AD9832, 和 AD9835 提供四個相位寄存器,通過連續(xù)更新寄存器的不同相位偏移,可以實現(xiàn)復(fù)雜的相位調(diào)制方案.
以同步模式利用多個DDS元件實現(xiàn)I/Q功能
許多應(yīng)用要求產(chǎn)生兩個或兩個以上具有已知相位關(guān)系的正弦波或方波信號。一個常見的例子是同相和正交調(diào)制(I/Q),在這種技術(shù)中,在0°和90°相位角度從載波頻率獲得信號信息??梢杂孟嗤脑磿r鐘來運行兩個單獨的DDS元件,以輸出可以直接控制和操作其相位關(guān)系的信號。在圖6中,用一個基準(zhǔn)時鐘對AD9838器件編程;相同的RESET引腳用于更新兩個器件。這樣,可以實現(xiàn)簡單的I/Q調(diào)制
RESET必須在上電后以及向DDS傳輸任何數(shù)據(jù)之前初始化。結(jié)果可將DDS輸出置于已知相位,使其成為共同的參考角度,以便同步多個DDS器件。當(dāng)新數(shù)據(jù)被同時送至多個DDS器件時,DDS之間可以保持相關(guān)相位關(guān)系,或者通過相位偏移寄存器可以預(yù)測性調(diào)整多個DDS之間的相對相位偏移。AD983x系列DDS產(chǎn)品擁有12位相位分辨率,有效分辨率為0.1°。
圖6.同步兩個DDS元件。
有關(guān)同步多個DDS器件的更多信息,請參閱應(yīng)用筆記 AN-605同步多個基于DDS的頻率合成器AD9852..
網(wǎng)絡(luò)分析
電子世界中的諸多應(yīng)用都需要收集和解碼來自網(wǎng)絡(luò)的數(shù)據(jù),例如模擬測量和光學(xué)通信系統(tǒng)。正常情況下,系統(tǒng)分析要求是為了以幅度和相位已知的頻率模擬電路或系統(tǒng),并分析通過系統(tǒng)的響應(yīng)信號的特性.
對響應(yīng)信號收集的信息用于確定關(guān)鍵系統(tǒng)信息。測試網(wǎng)絡(luò)的范圍(見圖7)可能非常寬泛,包括電纜完整性測試、生物醫(yī)學(xué)傳感和流速測量系統(tǒng)。無論何時,只要基本要求是產(chǎn)生基于頻率的信號并將響應(yīng)信號的相位和幅度與原始信號進(jìn)行比較,或者是要通過系統(tǒng)激勵一系列頻率,或者要求具有不同相位關(guān)系(如具有I/Q功能的系統(tǒng)中)的測試信號,則可利用直接數(shù)字頻率合成IC,方便、優(yōu)雅地通過軟件以數(shù)字方式控制激勵頻率和相位。
圖7.利用頻率激勵的典型網(wǎng)絡(luò)分析架構(gòu)。
電纜完整性/損耗測量
纜完整性測量是一種非介入式電纜分析方法,廣泛用于飛機(jī)布線、局域網(wǎng)(LAN)和電話線路等應(yīng)用之中。確定性能的一種方式是看通過電纜時損耗了多少信號。通過注入頻率和幅度已知的信號,用戶可以在電纜遠(yuǎn)端測量幅度和相位,由此算出電纜衰減。直流電阻和特性阻抗等參數(shù)將影響具體電纜的衰減。其結(jié)果通常表示為在整個測試頻率范圍內(nèi)低于信號源的(0 dB)分貝數(shù)。目標(biāo)頻率取決于電纜類型。DDS器件因具有產(chǎn)生寬范圍頻率的能力,所以可以用作具有必要頻率分辨率的激勵。
流量計
一種相關(guān)應(yīng)用是對管道中的水、其他液體和氣體進(jìn)行流量分析。一個例子是超聲流量測量,其工作原理是相移原則,如圖8所示?;径?,從有液體流動的通道的一端發(fā)射信號,同時在另一端放置一個傳感器以測量相位響應(yīng)(取決于流速)。這種技術(shù)存在多種變化。測試頻率取決于測量的物質(zhì);一般而言,往往在一系列頻率范圍內(nèi)發(fā)射輸出信號。DDS具有無縫設(shè)置和更改頻率的靈活性
圖8.超聲流量計。
更多信息和有用的鏈接
互動式設(shè)計工具
它是什么?它是DDS的在線互動式設(shè)計工具,是在給定參考時鐘和目標(biāo)輸出頻率和/或相位時用于選擇調(diào)諧字的輔助工具。該工具的編程計算結(jié)果給出了調(diào)諧字和其他配置位,供對器件串行接口編程時使用。在應(yīng)用外部重構(gòu)濾波器之后,可以顯示選定參考時鐘和輸出頻率的理想輸出諧波。ADI設(shè)計工具的鏈接可以在互動式設(shè)計工具主頁上找到AD9834設(shè)計工具即是例子之一.
評估套件
AD983x系列產(chǎn)品配備功能完善的評估套件,并配有原理圖和布局指南。借助評估套件中提供的軟件,用戶可以輕松對器件進(jìn)行編程、配置和測試(見圖9)
圖9.AD9838評估軟件接口。
其他有用的DDS信號可以在DDS網(wǎng)站上找到.
另請參閱:
Murphy, Eva and Colm Slattery. "直接數(shù)字頻率合成全攻略." 應(yīng)用工程師問答—33。模擬對話。2004年第38卷第3期: 8–12.
數(shù)字信號合成技術(shù)教程.. 1999. Analog Devices, Inc.
附錄
AD9838簡介:AD9838 DDS的功能框圖如圖10所示。該器件采用細(xì)線CMOS工藝制成,是一款超低功耗(11 mW)的純DDS。28位的頻率寄存器支持0.06 Hz頻率分辨率和16 MHz時鐘,以及0.02 Hz頻率分辨率和5 MHz時鐘。相位和頻率調(diào)制通過片內(nèi)寄存器利用軟件或引腳選擇來配置。該器件具有−68 dBc寬帶和−97 dBc窄帶SFDR,工作溫度范圍為–40°C至+125°C擴(kuò)展溫度范圍。器件采用小型4 mm × 4 mm、20引腳LFCSP(引腳架構(gòu)芯片級)封裝.
圖10.AD9838 DDS的功能框圖。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動化和互聯(lián)化的未來
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗?
- 能源、清潔科技和可持續(xù)發(fā)展的未來
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會:通過數(shù)字統(tǒng)一計劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級軟件:精準(zhǔn)捕獲隱匿射頻信號
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
分頻器
風(fēng)力渦輪機(jī)
風(fēng)能
風(fēng)扇
風(fēng)速風(fēng)向儀
風(fēng)揚高科
輔助駕駛系統(tǒng)
輔助設(shè)備
負(fù)荷開關(guān)
復(fù)用器
伽利略定位
干電池
干簧繼電器
感應(yīng)開關(guān)
高頻電感
高通
高通濾波器
隔離變壓器
隔離開關(guān)
個人保健
工業(yè)電子
工業(yè)控制
工業(yè)連接器
工字型電感
功率表
功率電感
功率電阻
功率放大器
功率管
功率繼電器