【導(dǎo)讀】熱泵,英文heat pump,它有2個(gè)定義,定義1:從低溫?zé)嵩次鼰崴屯邷責(zé)嵩吹难h(huán)設(shè)備。定義2:以消耗一部分高品位能源(機(jī)械能、電能或高溫?zé)崮?為補(bǔ)償,使熱能從低溫?zé)嵩聪蚋邷責(zé)嵩磦鬟f的裝置。所以,熱泵廣泛用于冬天取暖,產(chǎn)生熱水,工業(yè)烘干,溫室養(yǎng)殖等。
1 熱泵簡介
熱泵,英文heat pump,它有2個(gè)定義,定義1:從低溫?zé)嵩次鼰崴屯邷責(zé)嵩吹难h(huán)設(shè)備。定義2:以消耗一部分高品位能源(機(jī)械能、電能或高溫?zé)崮?為補(bǔ)償,使熱能從低溫?zé)嵩聪蚋邷責(zé)嵩磦鬟f的裝置。所以,熱泵廣泛用于冬天取暖,產(chǎn)生熱水,工業(yè)烘干,溫室養(yǎng)殖等。
簡單講,熱泵就是一個(gè)能量的搬運(yùn)工,對(duì)于用戶而言,花了一份電費(fèi),獲得了四份甚至更多的熱量,這多出來的熱量,就來源于大自然,根據(jù)熱源的不同,熱泵分為空氣源熱泵,水源熱泵,地?zé)嵩礋岜玫取K?,熱泵的能效天然就是大?的,只賺不賠……
說了這么多,熱泵究竟長啥樣呢,圖1來自于美的集團(tuán)空氣源熱泵的一份產(chǎn)品手冊,是不是和常見的空調(diào)外機(jī)非常像,對(duì)的,從其內(nèi)部硬件來看,它確實(shí)和空調(diào)外機(jī)沒什么區(qū)別,只是空調(diào)采用的是卡諾循環(huán)原理,把熱量從室內(nèi)搬運(yùn)到室外,而熱泵采用的是逆卡諾循環(huán)原理,把熱量從室外搬運(yùn)到室內(nèi)。一正一反,不得不感嘆科學(xué)的神奇。
圖1 空氣源熱泵及其應(yīng)用示意圖
2 熱泵的結(jié)構(gòu)以及諧波電流法規(guī)
熱泵按照交流輸入電源可以分為單相熱泵和三相熱泵,其輸出電功率可覆蓋3 kW到幾十千瓦。如圖2所示,熱泵的室外機(jī),主要由三部分構(gòu)成,包含PFC、壓縮機(jī)逆變器和風(fēng)機(jī)逆變器。
估計(jì)眼尖的讀者已經(jīng)注意到了,無論是單相熱泵,還是三相熱泵,都包含了PFC這一功率環(huán)節(jié)。沒錯(cuò),對(duì)于用電設(shè)備產(chǎn)生的諧波電流,全球各國以及地區(qū)都制定了明確的法規(guī),熱泵產(chǎn)品只有滿足了諧波電流法規(guī)要求,才能在所在國家和地區(qū)進(jìn)行銷售,PFC也就是功率因素校正, 則可以有效改善用電設(shè)備的輸入諧波電流并提高其功率因素。
圖2 熱泵室外機(jī)電路結(jié)構(gòu)框圖
根據(jù)用電設(shè)備的輸入相電流大小,可以把用電設(shè)備分為兩大類,適用不同的法規(guī)進(jìn)行諧波電流的市場準(zhǔn)入管理。如圖3,以輸入相電流有效值等于16A為界,當(dāng)用電設(shè)備的輸入相電流有效值小于或者等于16A時(shí),適用IEC 61000-3-2,對(duì)應(yīng)的國標(biāo)就是GB17625.1,這也是廣大工程師最熟悉的;當(dāng)用電設(shè)備的輸入相電流有效值大于16A時(shí),則適用IEC 61000-3-12。這兩個(gè)主要的諧波電流法規(guī)最近有更新,但內(nèi)容主體基本不變。最新的IEC 61000-3-2: 2019+A1-2021,將于2024年4月9日起執(zhí)行;國標(biāo)GB17625.1-2022,將于2024年7月1日起執(zhí)行。
這里需要敲黑板的是,是以輸入相電流有效值,而不是根據(jù)單相輸入還是三相輸入,來決定究竟適用哪個(gè)法規(guī)。確定好適用的法規(guī)后,再根據(jù)對(duì)應(yīng)的細(xì)分類別去查看具體的諧波電流限值要求。
圖3 輸入諧波電流法規(guī)和分類
3 英飛凌的產(chǎn)品解決方案
正如前面所講到,無論是單相熱泵還是三相熱泵,都需要PFC,逆變器和對(duì)應(yīng)的驅(qū)動(dòng)IC,控制器IC,作為業(yè)內(nèi)知名半導(dǎo)體廠商,英飛凌當(dāng)然可以提供一站式解決方案。
3.1 當(dāng)輸入相電流有效值大于16A時(shí)(模塊方案)
以三相熱泵為例,對(duì)于輸入相電流有效值大于16A的熱泵產(chǎn)品,因?yàn)橹C波電流標(biāo)準(zhǔn)相對(duì)比較寬松,所以,采用被動(dòng)式PFC,也就是通過在直流母線上串聯(lián)直流電抗器,與母線電解電容一起構(gòu)成LC 濾波器的方式,即可滿足諧波電流限值的要求,因此,PIM模塊就成了當(dāng)仁不讓的最佳選擇,如圖4,PIM模塊將三相整流橋,制動(dòng)橋臂和三相逆變橋全部集成到了一個(gè)模塊中,充分滿足了客戶PCBA小型化的需求。根據(jù)逆變IGBT電流的不同,英飛凌提供了EASY和Econo兩個(gè)大類封裝的多款PIM模塊,如圖5,工程師朋友們可以靈活選擇。
圖4 IGBT PIM模塊及被動(dòng)式PFC電路框圖
(相電流>16A)
圖 5 EASY封裝和Econo封裝IGBT7
PIM模塊可選電流范圍
3.2 當(dāng)輸入相電流有效值小于等于16A時(shí)(模塊方案)
對(duì)于輸入相電流有效值小于或者等于16A的三相熱泵產(chǎn)品,目前市場上被動(dòng)式PFC和主動(dòng)式APFC的方案并存,如圖6,圖7,圖8。圖6是被動(dòng)式PFC方案,可以選用25A的PIM模塊,在整流橋之前加入三相交流電抗器,這種方式簡單易操作,當(dāng)然,缺點(diǎn)也很明顯,為了滿足諧波電流限值的要求,在單個(gè)交流電抗器上的壓降可達(dá)到輸入相電壓的2%-4%,所以,交流電抗器感值大,效率低,個(gè)頭重,不能安裝在PCB板上,只能安裝到機(jī)殼內(nèi)壁,然后通過導(dǎo)線連接到PCB板上,導(dǎo)致生產(chǎn)線裝配成本也上去了。
通常,只有提高開關(guān)頻率,才能有效減小磁性器件的體積,所以,既能滿足諧波電流法規(guī),又高效,還能把電感或者電抗器安裝到PCB板上的有源PFC方案就成了最優(yōu)選擇,如圖7,圖8,三電平Vienna整流器和三相B6的APFC方案,均可滿足諧波電流限值和板載PFC電感的要求。
圖6 采用被動(dòng)式PFC的熱泵電路框圖
(相電流≤16A)
圖7 采用三電平Vienna主動(dòng)式APFC的熱泵電路框圖
圖8 采用三相B6主動(dòng)式APFC的熱泵電路框圖
對(duì)于三電平Vienna整流器,英飛凌有EASY2B封裝的FS3L35R07W2H5_C56和FS3L35R07W2H5_C40兩個(gè)模塊可選,封裝如圖9,兩個(gè)模塊的區(qū)別是C56是焊接版本,C40是壓接版本,其他參數(shù)都一樣。模塊內(nèi)部IGBT采用35A的H5,可支持開關(guān)頻率到40 kHz,輸出功率8 kW左右。
圖9 FS3L35R07W2H5 Vienna模塊
對(duì)于三相B6的有源PFC方案,英飛凌則提供了高集成度的1200V SiC MOSFET IPM方案,IM828-XCC,最高可支持開關(guān)頻率80kHz,其內(nèi)部框圖見圖11。目前已經(jīng)有客戶采用IM828-XCC做三相B6 PFC,開關(guān)頻率36kHz,輸出功率8 kw,最高效率達(dá)到98.1%。
圖10 SiC MOSFET IPM IM828
3.3 當(dāng)輸入相電流有效值小于等于16A時(shí)(單管IGBT方案)
如果基于成本考慮,也可以采用單管去搭建三相B6 APFC,因?yàn)锽6是兩電平的拓?fù)?,每個(gè)開關(guān)直接承受全部的母線電壓應(yīng)力,所以,如果采用常規(guī)的IGBT,通常開關(guān)頻率只能設(shè)置為10kHz左右,這樣導(dǎo)致三相PFC的電感感值還是偏大,個(gè)頭重,放置在PCB板上還是挑戰(zhàn)頗大,因此,如果有一款I(lǐng)GBT的單管,既能滿足比較高的開關(guān)頻率,成本還有競爭力,那就相當(dāng)有吸引力了。
英飛凌的1200V H7系列IGBT單管,則是這樣一款優(yōu)秀的產(chǎn)品,見圖12,相比此前的多個(gè)系列的IGBT,其總損耗下降了40%~50%,所以,如果保持輸出電流不變,H7系列單管IGBT的開關(guān)頻率則可提升一倍,或者,通過選擇更大額定電流等級(jí)的CH7單管IGBT,把開關(guān)頻率進(jìn)一步提升,見圖13,單個(gè)IGBT的電流已經(jīng)可以達(dá)到140A,也就意味著即使不用單管并聯(lián)的方式,也可以輸出非常高的功率。
圖11 H7與其他系列IGBT的損耗對(duì)比
圖12 H7系列單管IGBT型號(hào)與封裝
當(dāng)然,英飛凌也同步推出了650V的H7系列單管IGBT,可用于單相的Boost PFC和交錯(cuò)式PFC,詳情請登錄英飛凌官網(wǎng)查看。
小結(jié)
對(duì)于熱泵應(yīng)用中的輸入諧波電流,無論是采用被動(dòng)式PFC還是主動(dòng)式APFC,英飛凌均有豐富的產(chǎn)品系列,簡要概括見表1。被動(dòng)式PFC的優(yōu)點(diǎn)是簡單易操作,缺點(diǎn)也很明顯,更換輸入電壓或者功率后,電抗器就得重新去試湊匹配,不然某次諧波就會(huì)像打地鼠一樣超標(biāo)冒出來;主動(dòng)式APFC則沒有這個(gè)煩惱,主要的難度在于軟件控制算法層面,需要投入大量的研發(fā)資源去開發(fā)。長遠(yuǎn)來看,隨著諧波電流法規(guī)的趨嚴(yán)以及終端客戶的更高要求,采用主動(dòng)式APFC是一個(gè)必然趨勢。
表1 英飛凌三相熱泵解決方案概要
原創(chuàng):伍堂順 來源:英飛凌
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
ams OSRAM營銷副總裁Gerald Broneske:感知未來,用光學(xué)為未來交通發(fā)展引路
AURIX TC3xx雷達(dá)信號(hào)處理CFAR算法詳解
隔離式 DC/DC 轉(zhuǎn)換器——穩(wěn)壓與非穩(wěn)壓