ADSP-CM403 HAE在太陽能應(yīng)用中的諧波分析
發(fā)布時(shí)間:2020-07-17 來源:Martin Murnane 責(zé)任編輯:wenwei
【導(dǎo)讀】太陽能光伏逆變器轉(zhuǎn)換來自太陽能面板的電能并高效地 將其部署到公用電網(wǎng)中。早期太陽能PV逆變器只是將 電能轉(zhuǎn)儲(chǔ)到公用電網(wǎng)的模塊。但是,新設(shè)計(jì)要求太陽能 光伏逆變器對(duì)電網(wǎng)的穩(wěn)定性作出貢獻(xiàn)。
本文將回顧最新的ADI技術(shù)如何以HAE(諧波分析引擎) 的方式改善智能電網(wǎng)的集成度,并監(jiān)控電網(wǎng)上的電源質(zhì) 量,從而極大地增強(qiáng)電網(wǎng)穩(wěn)定
智能電網(wǎng)
什么是智能電網(wǎng)?IMS Research將智能電網(wǎng)定義為“一種 自身能夠高效匹配和管理發(fā)電和用電并可最大程度地利 用各種可用資源的公用供電基礎(chǔ)設(shè)施”。若要將新一代 太陽能光伏逆變器接入智能電網(wǎng),則逆變器需要越來越 高的智能程度才能實(shí)現(xiàn)。這本身就是一個(gè)難題,主要是 因?yàn)楫?dāng)電力需求在別處時(shí),此處卻連接了過多的電網(wǎng), 從而發(fā)生不平衡。基于這個(gè)原因,如前文所述,太陽能 光伏逆變器需要具備更高的智能程度,并且這種智能應(yīng) 側(cè)重于電網(wǎng)集成,其中系統(tǒng)需協(xié)助穩(wěn)定電網(wǎng),而非作為 電網(wǎng)的一個(gè)簡(jiǎn)單電源使用。
圖1. ADSP-CM403 HAE框圖(ADI公司)
這要求更好地對(duì)注入電網(wǎng)的電能進(jìn)行測(cè)量、控制和質(zhì)量 分析。當(dāng)然,這會(huì)促成新指令的發(fā)布以及更高的技術(shù)要 求,進(jìn)而直接導(dǎo)致新技術(shù)的產(chǎn)生。
ADSP-CM403XY HAE外設(shè)模塊
HAE模塊本質(zhì)上是一個(gè)數(shù)字PLL,其簡(jiǎn)化原理圖如下圖 所示。HAE連續(xù)接收V和I數(shù)據(jù),并且數(shù)個(gè)周期后將鎖定 至輸入波形的基波。HAE模塊的輸入范圍為45 Hz至66 Hz。 最多可分析40個(gè)諧波,每次12個(gè)。對(duì)于每個(gè)諧波,PLL 會(huì)試圖鎖定至所需的信號(hào)頻率
圖2. HAE簡(jiǎn)化數(shù)字PLL
諧波引擎硬件模塊與諧波分析儀共同處理結(jié)果。由于諧 波引擎產(chǎn)生的結(jié)果為最終格式,這些結(jié)果數(shù)據(jù)保存在結(jié) 果存儲(chǔ)器中。HAE引擎在無衰減的2.8 kHz通帶內(nèi)計(jì)算諧 波信息(相當(dāng)于3.3 kHz的-3 dB帶寬),用于45 Hz至66 Hz 范圍內(nèi)的線路頻率。
圖3. HAE通帶頻率
同時(shí)可使用相電流和來分析零線電流。在新采樣周期的 最初時(shí)刻,諧波引擎在含有數(shù)據(jù)RAM內(nèi)的預(yù)定義位置 循環(huán),該數(shù)據(jù)RAM含有分析儀處理結(jié)果。若有需要, 內(nèi)容可進(jìn)一步處理。
電壓和電流數(shù)據(jù)可來自Sinc模塊或ADC(兩者均存儲(chǔ)在 SRAM中),并輸入至HAE模塊,速率為8 kHz。該速率下 可產(chǎn)生一個(gè)中斷,提示太陽能光伏逆變器輸入可用數(shù) 據(jù)。進(jìn)行數(shù)據(jù)分析并執(zhí)行下列計(jì)算時(shí),HAE模塊將產(chǎn)生 另一次中斷,提示太陽能光伏系統(tǒng)準(zhǔn)備顯示諧波分析數(shù) 據(jù)。ADSP-CM403還可將HAE至DMA的全部結(jié)果數(shù)據(jù) 直接傳輸至SRAM,之后系統(tǒng)代碼便可顯示結(jié)果。這會(huì) 導(dǎo)致整個(gè)HAE系統(tǒng)的少許代碼開銷。
ADSP-CM403XY HAE結(jié)果
圖4中的HAE結(jié)果清楚表明觀察電壓均方根數(shù)據(jù)時(shí),系 統(tǒng)中存在哪些諧波。圖中50 Hz基波清晰可見,但250 Hz 和350 Hz處的較低諧波(如諧波5和7)亦可在本示例結(jié)果中 看到。
圖4. HAE的V rms示例結(jié)果(諧波1-12)
這些計(jì)算中采用的特定等式如下所示;下列等式同時(shí)適 用于基波和諧波計(jì)算。
Harmonic Engine Outputs and Registers where Values are Stored
表1. HAE數(shù)學(xué)計(jì)算
編程示例
INT HAE_CONFIG(VOID)
{ INT I;
HAE_INPUT_DATA(VOUTPUT, SINC_VEXT_DATA);
HAE_INPUT_DATA(IOUTPUT, SINC_IMEAS_DATA);
RESULT = ADI_HAE_OPEN(DEVNUM, DEVMEMORY, MEMORY_SIZE, &DEV);
RESULT = ADI_HAE_REGISTERCALLBACK(DEV, HAECALLBACK, 0);
RESULT = ADI_HAE_SELECTLINEFREQ(DEV, ADI_HAE_LINE_FREQ_50);
RESULT = ADI_HAE_CONFIGRESULTS(DEV, ADI_HAE_RESULT_MODE_IMMEDIATE, ADI_HAE_SETTLE_TIME_512, ADI_HAE_UPDATE_RATE_128000);
RESULT = ADI_HAE_SETVOLTAGELEVEL (DEV, 1.0);
RESULT = ADI_HAE_ENABLEINPUTPROCESSING(DEV, FALSE, FALSE); /* FILTER ENABLED */
/* ENABLE ALL HARMONICS (IN ORDER) */
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_1, 1);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_2, 2);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_3, 3);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_4, 4);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_5, 5);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_6, 6);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_7, 7);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_8, 8);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_9, 9);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_10, 10);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_11, 11);
RESULT = ADI_HAE_HARMONICINDEX (DEV, ADI_HAE_HARMONIC_INDEX_12, 12);
RESULT = ADI_HAE_SUBMITTXBUFFER(DEV, &TXBUFFER1[0], SIZEOF(TXBUFFER1));
RESULT = ADI_HAE_SUBMITTXBUFFER(DEV, &TXBUFFER2[0], SIZEOF(TXBUFFER2));
RESULT = ADI_HAE_ENABLEINTERRUPT(DEV, ADI_HAE_INT_RX, TRUE);
RESULT = ADI_HAE_ENABLEINTERRUPT(DEV, ADI_HAE_INT_TX, TRUE);
RESULT = ADI_HAE_CONFIGSAMPLEDIVIDER(DEV, 100000000);
RESULT = ADI_HAE_RUN(DEV, TRUE);
// RESULT = ADI_HAE_CLOSE(DEV);
}
/* EVENTS */
VOID HAECALLBACK(VOID* PHANDLE, UINT32_T EVENT, VOID* PARG) /* ISR ROUTINE TO LOAD / UNLOAD DATA FROM HAE
{
UINT32_T N;
ADI_HAE_EVENT EEVENT = (ADI_HAE_EVENT)EVENT; /* RESULTS RECEIVED FROM HAE 128MS */
IF (EEVENT == ADI_HAE_EVENT_RESULTS_READY)
{ /* GET RESULTS */
PRESULTS = (ADI_HAE_RESULT_STRUCT*)PARG; /* POINTER TO TXBUFFER1 OR TXBUFFER2 */
/* DO SOMETHING WITH THE RESULTS */
FOR (N=0; N<NUM_CHANNELS; N++)
{
IRMS[N] = PRESULTS[N].IRMS;
VRMS[N] = PRESULTS[N].VRMS;
ACTIVEPWR[N] = PRESULTS[N].ACTIVEPWR;
}
} /* TRANSMIT INPUT SAMPLES TO HAE – 8KHZ */
IF (EEVENT == ADI_HAE_EVENT_INPUT_SAMPLE)
{ /* FIND LATETS SAMPLES FROM SINC BUFFER . */
ADI_HAE_INPUTSAMPLE(DEV, (SINC_IMEAS_DATA[PWM_SINC_LOOP]),(SINC_VEXT_DATA[PWM_SINC_LOOP]));
INDEX++;
IF (INDEX >= NUM_SAMPLES) INDEX = 0;
}
COUNT++;
}
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
- 大聯(lián)大世平集團(tuán)的駕駛員監(jiān)控系統(tǒng)(DMS)方案榮獲第六屆“金輯獎(jiǎng)之最佳技術(shù)實(shí)踐應(yīng)用”獎(jiǎng)
- X-CUBE-STL:支持更多STM32, 揭開功能安全的神秘面紗
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
音頻IC
音頻SoC
音頻變壓器
引線電感
語音控制
元件符號(hào)
元器件選型
云電視
云計(jì)算
云母電容
真空三極管
振蕩器
振蕩線圈
振動(dòng)器
振動(dòng)設(shè)備
震動(dòng)馬達(dá)
整流變壓器
整流二極管
整流濾波
直流電機(jī)
智能抄表
智能電表
智能電網(wǎng)
智能家居
智能交通
智能手機(jī)
中電華星
中電器材
中功率管
中間繼電器