如何為開關(guān)電源選擇合適的MOSFET?
發(fā)布時(shí)間:2019-08-26 責(zé)任編輯:wenwei
【導(dǎo)讀】DC/DC開關(guān)控制器的MOSFET選擇是一個(gè)復(fù)雜的過(guò)程。僅僅考慮MOSFET的額定電壓和電流并不足以選擇到合適的MOSFET。要想讓MOSFET維持在規(guī)定范圍以內(nèi),必須在低柵極電荷和低導(dǎo)通電阻之間取得平衡。在多負(fù)載電源系統(tǒng)中,這種情況會(huì)變得更加復(fù)雜。
圖1:降壓同步開關(guān)穩(wěn)壓器原理圖。
DC/DC開關(guān)電源因其高效率而廣泛應(yīng)用于現(xiàn)代許多電子系統(tǒng)中。例如,同時(shí)擁有一個(gè)高側(cè)FET和低側(cè)FET的降壓同步開關(guān)穩(wěn)壓器,如圖1所示。這兩個(gè)FET會(huì)根據(jù)控制器設(shè)置的占空比進(jìn)行開關(guān)操作,旨在達(dá)到理想的輸出電壓。降壓穩(wěn)壓器的占空比方程式如下:
1.占空比(高側(cè)FET,上管)=Vout/(Vin*效率)
2.占空比(低側(cè)FET,下管)=1–DC(高側(cè)FET)
FET可能會(huì)集成到與控制器一樣的同一塊芯片中,從而實(shí)現(xiàn)一種最為簡(jiǎn)單的解決方案。但是,為了提供高電流能力及(或)達(dá)到更高效率,F(xiàn)ET需要始終為控制器的外部元件。這樣便可以實(shí)現(xiàn)最大散熱能力,因?yàn)樗孎ET物理隔離于控制器,并且擁有最大的FET選擇靈活性。它的缺點(diǎn)是FET選擇過(guò)程更加復(fù)雜,原因是要考慮的因素有很多。
一個(gè)常見問(wèn)題是“為什么不讓這種10A FET也用于我的10A設(shè)計(jì)呢?”答案是這種10A額定電流并非適用于所有設(shè)計(jì)。
選擇FET時(shí)需要考慮的因素包括額定電壓、環(huán)境溫度、開關(guān)頻率、控制器驅(qū)動(dòng)能力和散熱組件面積。關(guān)鍵問(wèn)題是,如果功耗過(guò)高且散熱不足,則FET可能會(huì)過(guò)熱起火。我們可以利用封裝/散熱組件ThetaJA或者熱敏電阻、FET功耗和環(huán)境溫度估算某個(gè)FET的結(jié)溫,具體方法如下:
3.Tj=ThetaJA*FET功耗(PdissFET)+環(huán)境溫度(Tambient)
它要求計(jì)算FET的功耗。這種功耗可以分成兩個(gè)主要部分:AC和DC損耗。這些損耗可以通過(guò)下列方程式計(jì)算得到:
4.AC損耗:AC功耗(PswAC)=½*Vds*Ids*(trise+tfall)/Tsw
其中,Vds為高側(cè)FET的輸入電壓,Ids為負(fù)載電流,trise和tfall為FET的升時(shí)間和降時(shí)間,而Tsw為控制器的開關(guān)時(shí)間(1/開關(guān)頻率)。
5.DC損耗:PswDC=RdsOn*Iout*Iout*占空比
其中,RdsOn為FET的導(dǎo)通電阻,而Iout為降壓拓?fù)涞呢?fù)載電流。
其他損耗形成的原因還包括輸出寄生電容、門損耗,以及低側(cè)FET空載時(shí)間期間導(dǎo)電帶來(lái)的體二極管損耗,但在本文中我們將主要討論AC和DC損耗。
開關(guān)電壓和電流均為非零時(shí),AC開關(guān)損耗出現(xiàn)在開關(guān)導(dǎo)通和關(guān)斷之間的過(guò)渡期間。圖2中高亮部分顯示了這種情況。根據(jù)方程式4),降低這種損耗的一種方法是縮短開關(guān)的升時(shí)間和降時(shí)間。通過(guò)選擇一個(gè)更低柵極電荷的FET,可以達(dá)到這個(gè)目標(biāo)。另一個(gè)因數(shù)是開關(guān)頻率。開關(guān)頻率越高,圖3所示升降過(guò)渡區(qū)域所花費(fèi)的開關(guān)時(shí)間百分比就越大。因此,更高頻率就意味著更大的AC開關(guān)損耗。所以,降低AC損耗的另一種方法便是降低開關(guān)頻率,但這要求更大且通常也更昂貴的電感來(lái)確保峰值開關(guān)電流不超出規(guī)范。
圖2:AC損耗圖。
圖3:開關(guān)頻率對(duì)AC損耗的影響。
開關(guān)處在導(dǎo)通狀態(tài)下出現(xiàn)DC損耗,其原因是FET的導(dǎo)通電阻。這是一種十分簡(jiǎn)單的I2R損耗形成機(jī)制,如圖4所示。但是,導(dǎo)通電阻會(huì)隨FET結(jié)溫而變化,這便使得這種情況更加復(fù)雜。所以,使用方程式3)、4)和5)準(zhǔn)確計(jì)算導(dǎo)通電阻時(shí),就必須使用迭代方法,并要考慮到FET的溫升。降低DC損耗最簡(jiǎn)單的一種方法是選擇一個(gè)低導(dǎo)通電阻的FET。另外,DC損耗大小同F(xiàn)ET的百分比導(dǎo)通時(shí)間成正比例關(guān)系,其為高側(cè)FET控制器占空比加上1減去低側(cè)FET占空比,如前所述。由圖5我們可以知道,更長(zhǎng)的導(dǎo)通時(shí)間就意味著更大的DC開關(guān)損耗,因此,可以通過(guò)減小導(dǎo)通時(shí)間/FET占空比來(lái)降低DC損耗。例如,如果使用了一個(gè)中間DC電壓軌,并且可以修改輸入電壓的情況下,設(shè)計(jì)人員或許就可以修改占空比。
圖4:DC損耗圖。
圖5:占空比對(duì)DC損耗的影響。
盡管選擇一個(gè)低柵極電荷和低導(dǎo)通電阻的FET是一種簡(jiǎn)單的解決方案,但是需要在這兩種參數(shù)之間做一些折中和平衡。低柵極電荷通常意味著更小的柵極面積/更少的并聯(lián)晶體管,以及由此帶來(lái)的高導(dǎo)通電阻。另一方面,使用更大/更多并聯(lián)晶體管一般會(huì)導(dǎo)致低導(dǎo)通電阻,從而產(chǎn)生更多的柵極電荷。這意味著,F(xiàn)ET選擇必須平衡這兩種相互沖突的規(guī)范。另外,還必須考慮成本因素。
低占空比設(shè)計(jì)意味著高輸入電壓,對(duì)這些設(shè)計(jì)而言,高側(cè)FET大多時(shí)候均為關(guān)斷,因此DC損耗較低。但是,高FET電壓帶來(lái)高AC損耗,所以可以選擇低柵極電荷的FET,即使導(dǎo)通電阻較高。低側(cè)FET大多數(shù)時(shí)候均為導(dǎo)通狀態(tài),但是AC損耗卻最小。這是因?yàn)?,?dǎo)通/關(guān)斷期間低側(cè)FET的電壓因FET體二極管而非常地低。因此,需要選擇一個(gè)低導(dǎo)通電阻的FET,并且柵極電荷可以很高。圖7顯示了上述情況。
圖6:低占空比設(shè)計(jì)的高側(cè)和低側(cè)FET功耗。
如果我們降低輸入電壓,則我們可以得到一個(gè)高占空比設(shè)計(jì),其高側(cè)FET大多數(shù)時(shí)候均為導(dǎo)通狀態(tài),如圖7所示。這種情況下,DC損耗較高,要求低導(dǎo)通電阻。根據(jù)不同的輸入電壓,AC損耗可能并不像低側(cè)FET時(shí)那樣重要,但還是沒有低側(cè)FET那樣低。因此,仍然要求適當(dāng)?shù)牡蜄艠O電荷。這要求在低導(dǎo)通電阻和低柵極電荷之間做出妥協(xié)。就低側(cè)FET而言,導(dǎo)通時(shí)間最短,且AC損耗較低,因此我們可以按照價(jià)格或者體積而非導(dǎo)通電阻和柵極電荷原則,選擇正確的FET。
圖7:高占空比設(shè)計(jì)的高側(cè)和低側(cè)FET功耗。
假設(shè)一個(gè)負(fù)載點(diǎn)(POL)穩(wěn)壓器時(shí)我們可以規(guī)定某個(gè)中間電壓軌的額定輸入電壓,那么最佳解決方案是什么呢,是高輸入電壓/低占空比,還是低輸入電壓/高占空比呢?使用不同輸入電壓對(duì)占空比進(jìn)行調(diào)制,同時(shí)查看FET功耗情況。
圖8中,高側(cè)FET反應(yīng)曲線圖表明,占空比從25%增至40%時(shí)AC損耗明顯降低,而DC損耗卻線性增加。因此,35%左右的占空比,應(yīng)為選擇電容和導(dǎo)通電阻平衡FET的理想值。不斷降低輸入電壓并提高占空比,可以得到最低的AC損耗和最高的DC損耗,就此而言,我們可以使用一個(gè)低導(dǎo)通電阻的FET,并折中選擇高柵極電荷。如低側(cè)FET圖9所示,控制器占空比由低升高時(shí)DC損耗線性降低(低側(cè)FET導(dǎo)通時(shí)間更短),高控制器占空比時(shí)損耗最小。整個(gè)電路板的AC損耗都很低,因此任何情況下都應(yīng)選擇使用低導(dǎo)通電阻的FET。
圖8:高側(cè)FET損耗與占空比的關(guān)系。
圖9:低側(cè)FET損耗與控制器占空比的關(guān)系。請(qǐng)注意:低側(cè)FET占空比為1-控制器占空比,因此低側(cè)FET導(dǎo)通時(shí)間隨控制器占空比增加而縮短。
圖10顯示了我們將高側(cè)和低側(cè)損耗組合到一起時(shí)總效率的變化情況。我們可以看到,這種情況下,高占空比時(shí)組合FET損耗最低,并且效率最高。效率從94.5%升高至96.5%。不幸的是,為了獲得低輸入電壓,我們必須降低中間電壓軌電源的電壓,使其占空比增加,原因是它通過(guò)一個(gè)固定輸入電源供電。因此,這樣可能會(huì)抵消在POL獲得的部分或者全部增益。另一種方法是不使用中間軌,而是直接從輸入電源到POL穩(wěn)壓器,目的是降低穩(wěn)壓器數(shù)。這時(shí),占空比較低,我們必須小心地選擇FET。
圖10:總損耗與效率和占空比的關(guān)系。
在有多個(gè)輸出電壓和電流要求的電源系統(tǒng)中,情況會(huì)更加復(fù)雜。對(duì)比不同POL穩(wěn)壓器占空比的效率、成本和體積。圖11顯示了一個(gè)系統(tǒng),其輸入電壓為28V,共有8個(gè)負(fù)載,4個(gè)不同電壓,范圍為3.3V到1.25V。共有3種對(duì)比方法:1)無(wú)中間軌,直接通過(guò)輸入電源提供28V電壓,以實(shí)現(xiàn)POL穩(wěn)壓器的低占空比;2)使用12V中間軌,POL穩(wěn)壓器中等占空比;3)使用5V中間軌,高POL穩(wěn)壓器占空比。圖12顯示了對(duì)比結(jié)果。這種情況下,無(wú)中間軌電源的構(gòu)架實(shí)現(xiàn)了最低成本,12V中間軌電壓的構(gòu)架獲得了最高效率,而5V中間軌電壓構(gòu)架則實(shí)現(xiàn)了最小體積。因此,我們可以看到,對(duì)于這種大型系統(tǒng)而言,單POL電源情況下我們所看到的這些參數(shù)均沒有明顯的趨向。這是因?yàn)?,使用多個(gè)穩(wěn)壓器時(shí),除中間軌穩(wěn)壓器本身以外,每個(gè)穩(wěn)壓器都有其不同的負(fù)載電流和電壓要求,而這些需求可能會(huì)相互沖突。研究這種情況的最佳方法是使用如WEBENCH電源設(shè)計(jì)師等工具,對(duì)不同的選項(xiàng)進(jìn)行評(píng)估。
圖11:表明輸入、中間軌、負(fù)載點(diǎn)(POL)電源和負(fù)載的電源系統(tǒng)。中間軌電壓的不同選擇為28V(直接使用輸入電源)、12V和5V。這會(huì)帶來(lái)不同的POL穩(wěn)壓器占空比。
圖12:電源設(shè)計(jì)曲線圖,其表明中間軌電壓對(duì)電源系統(tǒng)效率、體積和成本的影響。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來(lái)電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級(jí)電容的“外衣”,看看超級(jí)電容“超級(jí)”在哪兒
- DigiKey 誠(chéng)邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國(guó)電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池
歐勝
耦合技術(shù)
排電阻
排母連接器
排針連接器
片狀電感
偏光片
偏轉(zhuǎn)線圈
頻率測(cè)量?jī)x
頻率器件
頻譜測(cè)試儀
平板電腦