你的位置:首頁 > 電源管理 > 正文

分析開關(guān)電源中斜坡補償電路與設計

發(fā)布時間:2018-12-07 責任編輯:lina

【導讀】開關(guān)電源是利用現(xiàn)代電力電子技術(shù),控制開關(guān)晶體管的導通和關(guān)斷的時間比率,維持輸出電壓穩(wěn)定的一種電源,它和線性電源相比,具有效率高、功率密度高、可以實現(xiàn)和輸人電網(wǎng)的電氣隔離等優(yōu)點,被譽為離效節(jié)能電源M目前開關(guān)電源已經(jīng)應用到了各個領(lǐng)域,尤其在大功率應用的場合,開關(guān)電源具有明顯的優(yōu)勢。
 
引言
 
開關(guān)電源是利用現(xiàn)代電力電子技術(shù),控制開關(guān)晶體管的導通和關(guān)斷的時間比率,維持輸出電壓穩(wěn)定的一種電源,它和線性電源相比,具有效率高、功率密度高、可以實現(xiàn)和輸人電網(wǎng)的電氣隔離等優(yōu)點,被譽為離效節(jié)能電源M目前開關(guān)電源已經(jīng)應用到了各個領(lǐng)域,尤其在大功率應用的場合,開關(guān)電源具有明顯的優(yōu)勢。
 
開關(guān)電源一般由脈沖寬度控制(PWM)IC、功率開關(guān)管、整流二極管和LC濾波電路構(gòu)成。在中小功率開關(guān)電源中,功率開關(guān)管可以集成在PWM控制IC內(nèi)。開關(guān)電源按反饋方式分為電壓模式和電流模式。電流模式開關(guān)電源因其突出的優(yōu)點而得到了快速的發(fā)展和廣泛的應用。但是電流模式的結(jié)構(gòu)決定了它存在兩個缺點:恒定峰值電流而非恒定平均電流引起的系統(tǒng)開環(huán)不穩(wěn)定:占空比大于50%時系統(tǒng)的開環(huán)不穩(wěn)定。
 
本文旨在從原理上分析傳統(tǒng)電流模式的缺陷及改進方案,之后分析一個實用的斜坡補償電路。
 
1.電流模式的原理分析
 
開關(guān)電源可以有很多種結(jié)構(gòu),但原理基本相似。圖1是電流模式降壓斬波fg(Buck)開關(guān)電源的原理圖。它和電壓模式的主要區(qū)別是增加了電流采樣電阻R3和電流放大器IA. R3的阻值一般很小,以避免大的功耗。功率管Ql在每個周期開始的時候開啟并維持一段時間Ton,通過濾波電感Lo對濾波電容C。充電、同時向負載提供電流,此時Lo上電流隨時間的變化率為
 
分析開關(guān)電源中斜坡補償電路與設計
 
電感電流到達一定值后功率管關(guān)斷,二極管D1起續(xù)流和鉗位作用。設DI的導通壓降為VZ,則此時
 
分析開關(guān)電源中斜坡補償電路與設計
 
RI和R2分壓后和Vπf 比較并放大,變?yōu)樾盘朧EA;同時R3兩端的壓降經(jīng)IA放大后變?yōu)樾盘朧IA,當VIA高于VEA時,相關(guān)控制電路將控制功率管關(guān)斷,從而達到調(diào)節(jié)占空比的目的。通過實時地調(diào)節(jié)占空比,輸出電壓可以穩(wěn)定在一個預先設定的值。上述工作過程的波形如圖2,實線表示連續(xù)工作模式,虛線表示不連續(xù)工作模式,其中Clock表示時鐘信號,VEA表示EA的輸出,VIA表示IA的輸出,IQ1是功率管的電流,ID1是二極管電流
 
分析開關(guān)電源中斜坡補償電路與設計
 
分析開關(guān)電源中斜坡補償電路與設計
 
電流模式由于采用了電壓一電流雙環(huán)控制顯著改善了開關(guān)電源的性能,主要表現(xiàn)在:
 
① 根本消除了Push-pull開關(guān)電源存在的磁通量失恒問題磁通量失恒會減弱電感的承壓能力,導致功率管電流不斷增大并最終燒毀。電流模式在每個周期都限定功率管峰值電流,能徹底杜絕磁通量失恒.
 
② 電壓調(diào)整率顯著減小。當輸人電壓波動時圖1中的電流檢測電阻R3會立即檢測到峰值電流的變化,快速調(diào)整占空比,使輸出電壓穩(wěn)定
 
③ 簡化了反饋電路的設計LC濾波電路在頻率達到共鳴頻率后,相移會接近最大值180°,輸人到輸出的增益會隨著頻率的升高而迅速減小,這就增加了開關(guān)電源反饋電路設計的復雜程度在電流模式中,濾波電感的小信號阻抗幾乎為零,這樣就只能產(chǎn)生最大90,相移,增益隨頻率升高而下降的速度也減小為實際LC濾波電路的一半。因此反饋電路的設計可以大幅簡化
 
④ 改善了負載調(diào)整率。在電流模式中,誤差放大器的帶寬更大,因而負載調(diào)整率更好。
 
2.電流模式的缺點

2.1恒定峰值電流引起的電感平均電流不恒定 
 
電流模式的實質(zhì)是使電感平均電流跟隨誤差放大器輸出電壓VEA設定的值,即可用一個恒流源來代替電感,使整個系統(tǒng)由二階降為一階。但在常用的峰值電流模式中,不同的占空比會導致不同的電感平均電流。這可以由平均電流的計算式看出:
 
分析開關(guān)電源中斜坡補償電路與設計
 
其中Ip是峰值電流,dl是峰值電流和最小值的差值,T是時鐘周期,ton和toff分別為功率管開啟時間和關(guān)斷時間
 
如圖3所示,當由于某種原因使輸人電壓從Vdc1變化到Vdc2,電感電流的上升沿斜率將會變化(Vdc2-Vdc1)/Lo而下降沿斜率不變.占空比將從Dl變?yōu)镈2,電感電流的平均值從Iav1變化到Iav2,這往往會導致輸出電壓在一段時間內(nèi)振蕩
 
分析開關(guān)電源中斜坡補償電路與設計
 
2.2 電感擾動電流引起的輸出振蕩 
 
在輸入電壓不變的條件下,當由于某種外部原因使電感上的電流在一個下降沿結(jié)束時發(fā)生小的擾動AI,因為電流的上升沿和下降沿的斜率以及峰值電流都不變,所以在下一個周期結(jié)束后,這個擾動電流將被放大為
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
其中dt為發(fā)生擾動后導通時間的變化值,m1和m2分別為上升斜率和下降斜率。
 
從( 2)式可以看出,當占空比小于50%時,m2<m1,△I''<△I,即一個周期后擾動電流減弱。但是當占空比大于50%時,m2>m1,△I''>△I,即一個周期后擾動電流增強,如圖4所示。這同樣也會引起輸出電壓在一段時間內(nèi)的振蕩
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
3.斜坡補償?shù)脑矸治?/strong>
 
前面分析的兩個不穩(wěn)定情況實際上都是因為占空比改變引起了電感平均電流的變化,最終導致輸出電壓在一段時間內(nèi)振蕩,尤其當占空比大于50%時更加嚴重。如果能使系統(tǒng)在占空比足夠大的時候才發(fā)生上述不穩(wěn)定現(xiàn)象,就相當于解決了這兩個問題。設圖1中電阻R3上的壓降為Vs,可以嘗試在Vs上疊加一個斜率為m,且在時鐘周期起點處等于零的電壓,則經(jīng)IA放大后相當于在信號VIA上疊加了一個斜率為Avm的電壓。再設電感上有擾動電流AI,經(jīng)IA放大為AvAI。由圖5可以證明,經(jīng)過一個周期后這個擾動電流的值變?yōu)?/div>
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
把m1D=m2(1-D)代入(3)式得
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
要使擾動電流在第一個周期就減弱,必須要有
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
(5)式表明,在斜坡補償前,占空比達到50%后系統(tǒng)就開始不穩(wěn)定,斜坡補償之后,只要補償斜率m滿足式(5)的關(guān)系,系統(tǒng)始終是穩(wěn)定的。
 
由此可見,只要能確定電感電流下降沿的斜率m2和占空比D,就有可能設計出合適的斜坡補償電路,解決峰值電流控制型開關(guān)的輸出振蕩問題。
 
3.1 實際的斜坡補償電路分析 
 
在電流模式PWM IC內(nèi)部集成斜坡補償電路要比理論分析復雜得多,因為在不同應用情況下,(5)式中的m2和D也會不同,所以很難對所有可能的情況作最好的補償。由( 5)式 可以看出,開關(guān)電源穩(wěn)定工作時占空比D和電感電流下降沿斜率m2越大,那么它所需的斜坡補償?shù)牧恳簿驮酱蟆T谶B續(xù)工作模式中,D和m2都是由電路結(jié)構(gòu)決定的。而在不連續(xù)工作模式中,D是隨負載變化的量,m2是由電路結(jié)構(gòu)決定的。根據(jù)這個原理可以設計一個補償量隨占空比增大而增大,并且能夠適合一定范圍的m的斜坡補償電路,如圖6。其中Vcc是較穩(wěn)定的電壓,約為2.3V,Vosc是PWM內(nèi)部振蕩器輸出的鋸齒波,最小值和最大值分別為0.6V和1.7V, Vdrv是功率管的柵極控制信號,Iout是斜坡補償電流,輸出到電流采樣電阻(如圖1中的R3)的正端,從而在采樣電阻上疊加了一個電壓降,達到斜坡補償?shù)哪康摹?/div>
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
鉗位二極管DI、D2,分壓電阻網(wǎng)絡RI,R 2.R 3和R4共同決定了Q5, Q6和Q7的開啟點當一個時鐘周期開始時,Vdrv由低變高,Q1管導通,同時Vosc從最小值開始以一定的斜率上升Q4、Q5, Q6和Q7先后開啟,這四個晶體管集電極電流的總和被由Q2, Q3, R9. R10構(gòu)成的比例電流鏡鏡像后輸出到Iout。
 
設NPN晶體管的開啟閡值為VTn,D l和D2的正向?qū)▔航刀紴閂D, Ql的C-E結(jié)壓降近似為零,則通過兩個二極管的電流為
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
因此Q4, Q5. Q6. Q7的開啟點分別為
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
其中Ib0、IQ50是Q6開啟時的二極管和Q5的電流,Ib1、IQ51、IQ60是Q7開啟時的二極管、Q5和Q6的電流。
 
Q2 的集電極電流為上述四個晶體管的集電極電流總和:
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
因為 Q4 ,Q5,Q 6和Q7是先后開啟的,所以補償電流在時間軸上的斜率dlout/dt將隨著Vosc的增大而增大,即斜坡補償?shù)牧侩S占空比增大而增大。
 
功率管的導通時間結(jié)束時,Vdrv由高變低,Ql關(guān)斷,Iout隨即降為零。這樣可以減少不必要的系統(tǒng)功耗。
 
考慮不同應用情況下m2的變化范圍,計算(5)式就可以確定m隨D變化的曲線,再根據(jù)電流放大器IA的增益和振蕩器鋸齒波斜率計算可得各元件的尺寸。
 
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
圖7是在選取了元件尺寸后計算機仿真波形。其中Vosc是理想化的鋸齒波,Iout是輸出的補償電流,IQ4、IQ5、IQ6、 IQ7分別是Q4, Q5, Q6和Q7的漏極電流,可以看到,為了在占空比小于50%的時候系統(tǒng)更加穩(wěn)定,Q4在每個周期開始時就已經(jīng)開啟,但是電流的斜率較小。隨著Vosc以恒定的斜率上升,將先后在t1, t2, t3時達到Q5, Q6和07的開啟點。設Q4, Q5, Q6, Q7開啟后的電流斜率分別為m4, m5, m6和m7,分析開關(guān)電源中斜坡補償電路與設計
 
 
 
分析開關(guān)電源中斜坡補償電路與設計

設電流采樣電阻的阻值為RS,那么疊加在該電阻上壓降的斜率為:
 
分析開關(guān)電源中斜坡補償電路與設計
 
 
 
結(jié)論
 
本文分析了傳統(tǒng)電流模式開關(guān)電源的工作原理及其優(yōu)劣,從原理上解釋了電流模式在占空比大于50%后輸出不穩(wěn)定的問題和解決的方法。在此基礎上本文分析了一個實用的斜坡補償電路結(jié)構(gòu)并詳細分析了其工作過程。通過HSPICE的仿真分析,得到了預期的結(jié)果,證明了該電路的可行性。
 
 
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉