中心議題:
- 熱應(yīng)力理論模型和物理模型
- LED瞬態(tài)溫度場(chǎng)分布實(shí)驗(yàn)、仿真結(jié)果與分析
解決方案:
- LED 瞬態(tài)溫度測(cè)試實(shí)驗(yàn)與仿真
- LED 熱應(yīng)力與熱變形的模擬結(jié)果與分析
- 基板路徑上的熱應(yīng)力、應(yīng)變及剪應(yīng)力的模擬與分析
- 材料導(dǎo)熱系數(shù)對(duì)應(yīng)力,應(yīng)變和溫度的影響分析
本文以熱應(yīng)力理論為依據(jù),模擬了LED 瞬態(tài)溫度場(chǎng)和應(yīng)力場(chǎng)分布的變化,并與實(shí)測(cè)的LED 基板底部中心溫度變化情況進(jìn)行了對(duì)比研究;并分析了瞬態(tài)溫度場(chǎng)和應(yīng)力場(chǎng)的對(duì)應(yīng)變化關(guān)系;模擬研究了鍵合層材料導(dǎo)熱系數(shù)對(duì)LED 結(jié)溫和最大等效應(yīng)力的影響;計(jì)算了基板頂面平行于X 軸路徑上熱應(yīng)力、應(yīng)變及剪應(yīng)力的變化趨勢(shì)。
1 熱應(yīng)力理論模型及物理模型
根據(jù)傳熱理論,具有內(nèi)熱源的大功率LED 瞬態(tài)溫度場(chǎng)分布應(yīng)該滿足如下方程:
其中:T 為溫度;t 為時(shí)間;x, y, z 空間三維坐標(biāo)系;α 為熱膨脹系數(shù),α 滿足方程:
其中:λ 為導(dǎo)熱系數(shù),ρ 為密度,c 為比熱容。按照熱彈性力學(xué)理論,LED 溫度梯度導(dǎo)致的熱膨脹受到外部約束時(shí)產(chǎn)生的瞬態(tài)熱應(yīng)力,滿足如下方程:
式中:σ 為熱應(yīng)力,α 為熱膨脹系數(shù),E 為彈性模量,T 為溫度,Tref 為參考溫度。由式(3)可以看出,LED 內(nèi)部溫度場(chǎng)是確定熱應(yīng)力大小的前提,而溫度分布由熱傳導(dǎo)微分方程(1)決定,只要給出相應(yīng)的邊界條件即可得到溫度場(chǎng)及應(yīng)力場(chǎng)分布。
以Lumileds 的1 W 功率型LED 器件(如圖1)為研究對(duì)象,該LED 由透鏡、芯片、鍵合層、熱沉、基板及塑封料組成。熱量由芯片經(jīng)鍵合層傳導(dǎo)到熱沉,最后由基板與空氣進(jìn)行對(duì)流散熱。LED 各種封裝材料熱性能參數(shù)如表1 所示。
圖1 Lumidleds 1 W LED 模型
表1 LED 封裝材料的熱力學(xué)參數(shù)
[page]
2 實(shí)驗(yàn)、仿真結(jié)果與分析
采用自由網(wǎng)格建立LED 有限元模型,熱源和鍵合層采用一級(jí)網(wǎng)格,其余采用六級(jí)網(wǎng)格。芯片輸入熱功率按90%計(jì)算為0.9 W,環(huán)境溫度為25℃,生熱率4.0×109 W/m3,在LED 模型與空氣接觸面加載對(duì)流系數(shù)為10 W/m2.℃,并忽略各層材料中的接觸熱阻,設(shè)定求解時(shí)間為600 s,時(shí)間子步為20 s,利用有限元軟件ANSYS 求解式(1)~(3)即可得到Lumidleds 1 W LED 瞬態(tài)溫度場(chǎng)分布。
2.1 LED 瞬態(tài)溫度測(cè)試實(shí)驗(yàn)與仿真
為了驗(yàn)證有限元仿真的可靠性,設(shè)計(jì)了一組實(shí)驗(yàn)對(duì)Lumidleds 1 W LED 進(jìn)行溫度測(cè)試,測(cè)點(diǎn)為鋁基板底面中心,給定電流350 mA,電壓3 V,溫度測(cè)試時(shí)間為10 min,每隔10 s 記錄一次數(shù)據(jù),實(shí)驗(yàn)結(jié)果表明點(diǎn)亮8 min 后,LED 基本處于熱平衡狀態(tài),此時(shí)基板中心溫度為56℃。仿真結(jié)果表明此時(shí)LED 結(jié)溫為76.1℃(如圖2 所示)。
LED 從開(kāi)始工作到穩(wěn)態(tài)過(guò)程中,基板測(cè)點(diǎn)溫度變化曲線和仿真結(jié)果如圖3 所示,升溫過(guò)程中,實(shí)測(cè)結(jié)果略低于仿真結(jié)果,到達(dá)穩(wěn)態(tài)后,兩則相差2.9℃,驗(yàn)證了有限元分析的可靠性。材料參數(shù)的誤差、仿真過(guò)程中忽略了熱輻射以及將對(duì)流作為簡(jiǎn)單邊界條件施加是產(chǎn)生誤差的主要原因。
圖2 Lumileds 1 W LED 穩(wěn)態(tài)溫度場(chǎng)分布云圖
圖3 Lumileds 1W LED 基板中心點(diǎn)溫度實(shí)測(cè)數(shù)據(jù)與仿真數(shù)據(jù)對(duì)比
2.2 LED 熱應(yīng)力與熱變形的模擬結(jié)果與分析
在計(jì)算得到瞬態(tài)溫度場(chǎng)分布后,將熱單元solid70 轉(zhuǎn)換為結(jié)構(gòu)單元,用循環(huán)命令將每一個(gè)時(shí)間步的溫度場(chǎng)讀入到應(yīng)力場(chǎng),并在基板底面三個(gè)方向加約束,計(jì)算得到穩(wěn)態(tài)時(shí)應(yīng)變和應(yīng)力場(chǎng)如圖4(a)、(b)。
圖4(a)是Lumileds 1 W LED 在最終時(shí)刻(600 s)后總位移云圖,內(nèi)部帶網(wǎng)格云圖表示未變形前的結(jié)構(gòu),另一個(gè)實(shí)體云圖表示LED 在受熱膨脹后的變形效果,這里對(duì)變形量按比例進(jìn)行了放大。由圖可見(jiàn),熱變形主要集中在透鏡和塑封料處,特別是透鏡與塑封料接觸地方,最大變形量達(dá)到6.3 μm。由于基板底部加了X、Y、Z 三個(gè)方向約束,相當(dāng)于基板底部被固定,因此基板底部位移量為0 μm。
圖4(b)是LED 在穩(wěn)態(tài)時(shí)應(yīng)力分布云圖。由圖可見(jiàn),透鏡、外封塑料層和基板頂部的熱應(yīng)力很小,基板底部應(yīng)力明顯大于頂部。這是由于基板底部熱膨脹受到X、Y、Z 三個(gè)方向的約束所致。圖5(a)為基板底部的應(yīng)力分布圖,最大在基板底面的邊角處,為163 MPa;圖5(b)顯示基板頂部最大的熱應(yīng)力在熱沉與基板交界處,基板頂部邊角處只有1.43 MPa。
圖4 Lumileds 1 W LED 的熱變形云圖(a)和等效應(yīng)力云圖(b)
[page]
圖6(a)是鍵合層等效應(yīng)力分布云圖。由圖可見(jiàn),最大熱應(yīng)力在鍵合層邊角處為269 MPa,鍵合層最小應(yīng)力也達(dá)到94.6 MPa。這是由于鍵合層導(dǎo)熱系數(shù)較小,熱阻較大,熱量在此處積聚較多,導(dǎo)致在鍵合層邊角處熱應(yīng)力成為整個(gè)封裝器件最集中部分。圖6(b)是芯片等效熱應(yīng)力分布云圖,芯片最大應(yīng)力在四個(gè)邊角處為34.1 MPa,如此高的應(yīng)力易引起芯片破裂,要特別注意。
圖6 Lumileds 1 W LED 鍵合層(a)和芯片(b)的等效熱應(yīng)力分布
芯片頂面中心節(jié)點(diǎn)的位移隨時(shí)間變化曲線如圖7 所示,X 和Z 方向位移近似為零,Y 方向的位移隨著時(shí)間和溫度場(chǎng)的變化而不斷變化(Y 向?yàn)槠骷v向即溫度傳遞方向),在光源點(diǎn)亮500 s 左右后,溫度場(chǎng)進(jìn)入穩(wěn)定狀態(tài),此時(shí)芯片應(yīng)變量達(dá)到最大6.3 μm,與瞬態(tài)溫度場(chǎng)的變化相符。
圖7 Lumileds 1 W LED 芯片中心節(jié)點(diǎn)位移隨著時(shí)間變化曲線
2.3 基板路徑上的熱應(yīng)力、應(yīng)變及剪應(yīng)力的模擬與分析
在基板頂部平行于X 軸方向上選取如圖8 所示的一條軸向路徑,考察路徑上的應(yīng)變、應(yīng)力及剪應(yīng)力的變化情況。
圖8 基板頂面上的路徑示意圖
[page]
圖9(a)表示的是路徑上X、Y、Z 三個(gè)方向的位移變化曲線。由圖可知,路徑上UZ 幾乎趨于零,Y 方向上,兩端形變較小,中間偏大,這與溫度場(chǎng)分布相符合;UX 兩端位移較大,往中間逐漸減小,且兩端關(guān)于中心對(duì)稱,這與基板的形狀與約束條件有關(guān)。圖9(b)為路徑上應(yīng)力變化曲線,SX 與SZ 方向的應(yīng)力變化趨勢(shì)相同,保持較高的應(yīng)力水平,而SY 一直保持較低應(yīng)力水平。X、Y、Z 三個(gè)方向顯示應(yīng)力值都是兩邊大于中間,可以看出最大的應(yīng)力出現(xiàn)在邊角處。
圖9 路徑上的位移(a)和應(yīng)力(b)變化曲線
圖10 顯示了路徑上剪應(yīng)力的變化情況,SYZ 與SXZ 幾乎重合,且剪應(yīng)力很小,變化平緩;SXY 變化非常劇烈,說(shuō)明在Y 方向上,即基板與熱沉之間有較大的剪應(yīng)力,且由中間向兩端增大,表明剪應(yīng)力主要集中在邊角區(qū)域。這是由于基板與熱沉為兩種不同的材料,材料之間的熱膨脹系數(shù)及彈性模量不同而產(chǎn)生較大剪應(yīng)力。
圖10 路徑上剪應(yīng)力的變化曲線
[page]
2.4 材料導(dǎo)熱系數(shù)對(duì)應(yīng)力,應(yīng)變和溫度的影響
圖11 表示LED 結(jié)溫隨著器件各層材料導(dǎo)熱系數(shù)變化趨勢(shì)。
由圖可知,LED 結(jié)溫隨著熱沉和鍵合層導(dǎo)熱系數(shù)的變化趨勢(shì)類(lèi)似,當(dāng)λ 較小時(shí),隨著λ 增大,結(jié)溫迅速降低;當(dāng)λ 較大時(shí),隨著各種材料導(dǎo)熱系數(shù)變化,結(jié)溫變化平緩。這是因?yàn)楫?dāng)λ 較小時(shí),各材料的熱阻較大,而當(dāng)λ 較大時(shí),熱阻減小,熱量能順利傳出,此時(shí)導(dǎo)熱系數(shù)不再是影響整個(gè)系統(tǒng)傳熱效果的主要因素。由于LED 傳熱并不經(jīng)過(guò)透鏡,所以透鏡的導(dǎo)熱系數(shù)對(duì)LED 的結(jié)溫變化影響很小。
圖12 表示LED 芯片最大等效熱應(yīng)力及最大應(yīng)變,隨著鍵合層導(dǎo)熱系數(shù)的變化。芯片的應(yīng)變幾乎不變,與導(dǎo)熱系數(shù)無(wú)關(guān);而芯片受到的熱應(yīng)力隨著導(dǎo)熱系數(shù)增大迅速減小,但增大到一定值后,熱應(yīng)力變化趨于平緩,與鍵合層導(dǎo)熱系數(shù)改變對(duì)溫度場(chǎng)的影響趨勢(shì)相吻合。這是由于整個(gè)傳熱過(guò)程中,鍵合層的導(dǎo)熱系數(shù)最低,芯片到熱沉熱阻較大,導(dǎo)致LED 結(jié)溫較高,溫度梯度較大,使得熱應(yīng)力比較集中,因此鍵合層的材料選取對(duì)改變LED 結(jié)溫和熱應(yīng)力有至關(guān)重要的作用。
圖11 LED 結(jié)溫隨各種材料導(dǎo)熱系數(shù)變化曲線
圖12 LED 芯片最大應(yīng)力及應(yīng)變隨著鍵合層導(dǎo)熱系數(shù)變化曲線
3 結(jié) 論
通過(guò)對(duì)功率型LED 器件的溫度場(chǎng)與應(yīng)力場(chǎng)的模擬計(jì)算表明:LED 芯片軸向的應(yīng)變與溫度場(chǎng)的變化情況相符合,在500 s 時(shí)趨于穩(wěn)定;最大變形在透鏡與熱沉接觸地方,為6.3 μm;最大熱應(yīng)力在鍵合層與芯片接觸的邊角處,為269 MPa,芯片的最大應(yīng)力為34.1 MPa。通過(guò)材料對(duì)LED 結(jié)溫與應(yīng)變的分析,得到LED 的結(jié)溫隨著鍵合層和熱沉的導(dǎo)熱系數(shù)增大先急劇減小,但增大到一定值后,LED 結(jié)溫變化趨于平緩,而透鏡導(dǎo)熱系數(shù)對(duì)結(jié)溫幾乎沒(méi)有影響;LED 的最大等效應(yīng)力隨著鍵合層導(dǎo)熱系數(shù)的變化與溫度場(chǎng)變化情況完全相符合,對(duì)芯片的應(yīng)變幾乎沒(méi)有任何影響。應(yīng)變與應(yīng)力主要集中在溫度梯度變化較大、受約束的面以及容易產(chǎn)生應(yīng)力集中的邊角區(qū)域,這些區(qū)域特別容易產(chǎn)生破壞,因此LED 封裝時(shí),必須考慮到實(shí)際工作溫度,要求材料必須能夠忍耐熱應(yīng)力集中的地方。
根據(jù)本文的分析結(jié)論,LED 熱應(yīng)力的產(chǎn)生主要是由于各層封裝材料之間的熱力學(xué)性能參數(shù)不同而引起的。為了提高LED 的封裝品質(zhì),需選擇合適的封裝材料,具備足夠大的導(dǎo)熱系數(shù),以減小各封裝層之間的傳熱熱阻,防止熱量的積聚而產(chǎn)生大應(yīng)力。為了避免LED 半導(dǎo)體器件產(chǎn)生大變形,各層封裝材料的熱膨脹系數(shù)差異要小。同時(shí),各封裝層邊角處最好不要形成銳角,以避免在邊角處產(chǎn)生集中應(yīng)力而破壞LED 器件。