對(duì)于太陽能逆變器來說,絕緣柵雙極晶體管(IGBT)能比其他功率元件提供更多的效益,其中包括高載流能力、以電壓而非電流進(jìn)行控制,并能使逆并聯(lián)二極管與IGBT配合。本文將介紹如果利用全橋逆變器拓?fù)浼斑x用合適的IGBT,使太陽能應(yīng)用的功耗降至最低。
太陽能逆變器是一種功率電子電路,能把太陽能電池板的直流電壓轉(zhuǎn)換為交流電壓來驅(qū)動(dòng)家用電器、照明及電機(jī)工具等交流負(fù)載。如圖1所示,太陽能逆變器的典型架構(gòu)一般采用四個(gè)開關(guān)的全橋拓?fù)洹?br />
圖1:采用全橋拓?fù)涞牡湫吞柲苣孀兤骷軜?gòu)
在圖1中,Q1和Q3被指定為高壓側(cè)IGBT,Q2和Q4則是低壓側(cè)IGBT。該逆變器用于在其目標(biāo)市場的頻率和電壓條件下,產(chǎn)生單相位正弦電壓波形。有些逆變器用于連接凈計(jì)量效益電網(wǎng)的住宅安裝,這就是其中一個(gè)目標(biāo)應(yīng)用市場,此項(xiàng)應(yīng)用要求逆變器提供低諧波交流正弦電壓,讓電力可注入電網(wǎng)中。
為滿足這個(gè)要求,IGBT可在20kHz或以上頻率的情況下,對(duì)50Hz或60Hz的頻率進(jìn)行脈寬調(diào)制,因此輸出電感器L1和L2便可以保持合理的小巧體積,并能有效抑制諧波。此外,由于其轉(zhuǎn)換頻率高出人類的正常聽覺頻譜,因此該設(shè)計(jì)也可盡量減少逆變器產(chǎn)生的可聽噪聲。
脈寬調(diào)制這些IGBT的最佳方法是什么?怎樣才能把功耗降到最低呢?方法之一是僅對(duì)高壓側(cè)IGBT進(jìn)行脈寬調(diào)制,對(duì)應(yīng)的低壓側(cè)IGBT以50Hz或60Hz換相。圖2所示為一個(gè)典型的柵壓信號(hào)。當(dāng)Q1正進(jìn)行脈寬調(diào)制時(shí),Q4維持正半周期操作。Q2和Q3在正半周期保持關(guān)斷。到了負(fù)半周期,當(dāng)Q3進(jìn)行脈寬調(diào)制時(shí),Q2保持開啟狀態(tài)。Q1和Q4會(huì)在負(fù)半周期關(guān)斷。圖2也顯示了通過輸出濾波電容器C1的AC正弦電壓波形。
圖2:為Q1至Q4IGBT提供的柵極驅(qū)動(dòng)信號(hào),以及經(jīng)過L1-C1-L2濾波器之后的輸出AC正弦電壓
此變換技術(shù)具有以下優(yōu)點(diǎn):(1)電流不會(huì)在高壓側(cè)反并二極管上自由流動(dòng),因此可把不必要的損耗低至最低;(2)低壓側(cè)IGBT只會(huì)在50Hz或60Hz工頻進(jìn)行切換,主要是導(dǎo)通損耗;(3)由于同一相上的IGBT絕對(duì)不會(huì)以互補(bǔ)的方式進(jìn)行轉(zhuǎn)換,所以不可能出現(xiàn)總線短路擊穿情況;(4)可優(yōu)化低壓 側(cè)IGBT的反并聯(lián)二極管,以盡量減低續(xù)流和反向恢復(fù)導(dǎo)致的損耗。
IGBT技術(shù)
IGBT基本上是具備金屬門氧化物門結(jié)構(gòu)的雙極型晶體管(BJT)。這種設(shè)計(jì)讓IGBT的柵極可以像MOSFET一樣,以電壓代替電流來控制開關(guān)。作為一種BJT,IGBT的電流處理能力比MOSFET更高。同時(shí),IGBT亦如BJT一樣是一種少數(shù)載體元件。這意味著IGBT關(guān)閉的速度是由少數(shù)載體復(fù)合的速度快慢來決定。此外,IGBT的關(guān)閉時(shí)間與它的集極-射極飽和電壓(Vce(on))成反比(如圖3所示)。
圖3:關(guān)閉時(shí)間與Vce(on)成反比
以圖3為例,若IGBT擁有相同的體積和技術(shù),一個(gè)超速IGBT比一個(gè)標(biāo)準(zhǔn)速度的IGBT擁有更高的Vce(on) 。然而,超速IGBT的關(guān)閉速度卻比標(biāo)準(zhǔn)IGBT快得多。圖3反映的這種關(guān)系,是通過控制IGBT的少數(shù)載體復(fù)合率的使用周期以影響關(guān)閉時(shí)間來實(shí)現(xiàn)的。
圖4顯示了四個(gè)擁有相同尺寸的IGBT的參數(shù)值。前三個(gè)IGBT采用同樣的平面式技術(shù),但使用不同的壽命復(fù)合控制計(jì)量。從表中可見,標(biāo)準(zhǔn)速度的IGBT具有最低Vce(on),但與快速和超速平面式IGBT相比,標(biāo)準(zhǔn)速度的IGBT下降時(shí)間最慢。第四個(gè)IGBT是經(jīng)優(yōu)化的槽柵IGBT,能夠?yàn)樘柲苣孀兤鬟@類高頻率切換應(yīng)用提供低導(dǎo)通和開關(guān)損耗。請(qǐng)注意,槽柵IGBT的Vce(on)和總切換損耗 (Ets)比超速平面式IGBT低。
圖4:采用不同速度和技術(shù)的IGBT的參數(shù)比較
相關(guān)閱讀:
第二講:基于IGBT的高能效電源設(shè)計(jì)
http://m.jizeke.com/gptech-art/80020858
IGBT在風(fēng)光互補(bǔ)發(fā)電設(shè)計(jì)中新型應(yīng)用
http://m.jizeke.com/gptech-art/80020865
半月談:IGBT應(yīng)用設(shè)計(jì)全面剖析
http://m.jizeke.com/power-art/80020864
高壓側(cè)IGBT
前文討論了高壓側(cè)IGBT在20kHz或以上頻率進(jìn)行切換。假設(shè)設(shè)計(jì)一個(gè)擁有230V交流輸出的1.5kW太陽能逆變器,圖4中哪種IGBT具有最低的功耗呢?圖5顯示了IGBT在20kHz進(jìn)行切換的功耗分析,由此可見超速平面式IGBT比其它兩種平面式IGBT具有更低的總功耗。
圖5:高壓側(cè)IGBT在20kHz下的功耗
在20kHz下,開關(guān)損耗明顯成為總功耗的重要部分。同時(shí),標(biāo)準(zhǔn)速度IGBT的導(dǎo)通損耗雖然最低,但其開關(guān)損耗卻最大,并不適合充當(dāng)高壓側(cè)IGBT。
最新的600V槽柵IGBT專為20kHz的切換進(jìn)行了優(yōu)化。如圖五所示,這種IGBT比以往的平面式IGBT提供較低的總功耗。因此,為了讓太陽能逆變器的設(shè)計(jì)能夠達(dá)到最高效率,槽柵IGBT是高壓側(cè)IGBT的首選元件。
低壓側(cè)IGBT
低壓側(cè)IGBT同樣有同一問題。究竟哪一種IGBT才能提供最低的功耗?由于這些IGBT只會(huì)進(jìn)行50Hz或60Hz切換,如圖6所示,標(biāo)準(zhǔn)速度IGBT可提供最低的功耗。雖然標(biāo)準(zhǔn)IGBT會(huì)帶來一些開關(guān)損耗,但數(shù)值并不足以影響IGBT的總功耗。事實(shí)上,最新的槽柵IGBT仍然擁有較高的功耗,因?yàn)檫@一代的槽柵IGBT專門針對(duì)高頻率應(yīng)用而設(shè)計(jì),以平衡開關(guān)和導(dǎo)通損耗為目標(biāo)。因此,對(duì)低壓側(cè)IGBT來說,標(biāo)準(zhǔn)速度平面式IGBT仍然是必然選擇。
圖6:低壓側(cè)IGBT在60Hz情況下的功耗
本文分析了太陽能逆變器應(yīng)用的全橋拓?fù)?。這種拓?fù)淅谜颐}寬調(diào)制技術(shù),在高于20kHz情況下,為高壓側(cè)IGBT 進(jìn)行轉(zhuǎn)換。支線的低壓側(cè)IGBT決于輸出頻率要求,在50Hz或60Hz進(jìn)行轉(zhuǎn)換。若挑選最新的600V槽柵IGBT,其總功耗將會(huì)在20kHz下達(dá)到最 低。在低壓側(cè)IGBT方面,標(biāo)準(zhǔn)速度平面式IGBT是最佳選擇。標(biāo)準(zhǔn)速度IGBT在50Hz或60Hz下?lián)碛凶畹偷膶?dǎo)通損耗,其開關(guān)損耗對(duì)整體功耗來說微 不足道。因此,工程師只要正確選擇IGBT組合, 就能將太陽能逆變器應(yīng)用的功耗降至最低,從而實(shí)現(xiàn)高能效設(shè)計(jì)。
相關(guān)閱讀:
第二講:基于IGBT的高能效電源設(shè)計(jì)
http://m.jizeke.com/gptech-art/80020858
IGBT在風(fēng)光互補(bǔ)發(fā)電設(shè)計(jì)中新型應(yīng)用
http://m.jizeke.com/gptech-art/80020865
半月談:IGBT應(yīng)用設(shè)計(jì)全面剖析
http://m.jizeke.com/power-art/80020864