【導(dǎo)讀】模擬帶寬的重要性高于其他一切在越來(lái)越多的應(yīng)用中得到體現(xiàn)。隨著GSPS或RF ADC的出現(xiàn),奈奎斯特域在短短幾年內(nèi)增長(zhǎng)了10倍,達(dá)到多GHz范圍。這幫助上述應(yīng)用進(jìn)一步拓寬了視野,但為了達(dá)到X波段(12 GHz頻率),仍然需要更多帶寬。
在信號(hào)鏈中運(yùn)用采樣保持放大器 (THA),可以從根本上擴(kuò)展帶寬,使其遠(yuǎn)遠(yuǎn)超出ADC采樣帶寬,滿足苛刻高帶寬的應(yīng)用的需求。本文將證明,針對(duì)RF市場(chǎng)開發(fā)的最新
轉(zhuǎn)換器前增加一個(gè)THA,便可實(shí)現(xiàn)超過10 GHz帶寬。
簡(jiǎn)介
GSPS轉(zhuǎn)換器是當(dāng)下熱門,其優(yōu)勢(shì)在于既能縮短RF信號(hào)鏈,又能在FPGA中創(chuàng)建更多資源結(jié)構(gòu)以供使用,例如:減少前端的下變頻以及后級(jí)的數(shù)字下變頻器 (DDC)。但相當(dāng)多的應(yīng)用仍然需要高頻率的原始模擬帶寬 (BW),其遠(yuǎn)遠(yuǎn)超出了RF轉(zhuǎn)換器所能實(shí)現(xiàn)的水平。在此類應(yīng)用中,特別是在國(guó)防與儀器儀表行業(yè)(無(wú)線基礎(chǔ)設(shè)施也一樣),仍然有將帶寬完全擴(kuò)展到10 GHz或以上的需求,覆蓋范圍超出C波段,越來(lái)越多的應(yīng)用需要覆蓋到X波段。隨著高速ADC技術(shù)的進(jìn)步,人們對(duì)GHz區(qū)域內(nèi)高速精確地分辨超高中頻 (IF) 的需求也在提高,基帶奈奎斯特域已超過1 GHz并迅速攀升。這一說法到本文發(fā)表的時(shí)候可能即已過時(shí),因?yàn)檫@方面的發(fā)展非常迅猛。
這帶來(lái)了兩大挑戰(zhàn):一個(gè)是轉(zhuǎn)換器設(shè)計(jì)本身,另一個(gè)是將信號(hào)耦合到轉(zhuǎn)換器的前端設(shè)計(jì),例如放大器、巴倫和PCB設(shè)計(jì)。轉(zhuǎn)換器性能越出色,就對(duì)前端信號(hào)質(zhì)量要求更高。越來(lái)越多的應(yīng)用要求使用分辨率在8到14位的高速GSPS轉(zhuǎn)換器,然而前端的信號(hào)質(zhì)量成為了瓶頸—系統(tǒng)的短板決定了整個(gè)項(xiàng)目的指標(biāo)。
本文定義的寬帶是指使用大于數(shù)百M(fèi)Hz的信號(hào)帶寬,其頻率范圍為DC附近至5 GHz-10 GHz區(qū)域。本文將討論寬帶THA或有源采樣網(wǎng)絡(luò)的使用,目的是實(shí)現(xiàn)直至無(wú)窮大的帶寬(抱歉,現(xiàn)在還沒有玩具總動(dòng)員表情符號(hào)可用),并著重介紹其背景理論,該理論支持?jǐn)U展RF ADC的帶寬,而RF ADC單憑自身可能沒有此能力。最后,本文將說明一些考慮因素和優(yōu)化技術(shù),以幫助設(shè)計(jì)人員實(shí)現(xiàn)超寬帶應(yīng)用切實(shí)可行的寬帶解決方案。
打好基礎(chǔ)
對(duì)于雷達(dá)、儀器儀表和通信應(yīng)用,高GSPS轉(zhuǎn)換器應(yīng)用得非常廣泛,因?yàn)樗芴峁└鼘挼念l譜以擴(kuò)展系統(tǒng)頻率范圍。然而,更寬的頻譜對(duì)ADC本身的內(nèi)部采樣保持器提出了更多挑戰(zhàn),因?yàn)樗ǔN瘁槍?duì)超寬帶操作進(jìn)行優(yōu)化,而且ADC一般帶寬有限,在這些更高模擬帶寬區(qū)域中其高頻線性度/SFDR會(huì)下降。
因此,在ADC前面使用單獨(dú)的THA來(lái)拓展模擬帶寬成為了一個(gè)理想的解決方案,如此便可在某一精確時(shí)刻對(duì)頻率非常高的模擬/RF輸入信號(hào)進(jìn)行采樣。該過程通過一個(gè)低抖動(dòng)采樣器實(shí)現(xiàn)信號(hào)采樣,并在更寬帶寬范圍內(nèi)降低了ADC的動(dòng)態(tài)線性度要求,因?yàn)椴蓸勇蔙F模數(shù)轉(zhuǎn)換過程中保持不變。
這種方案帶來(lái)的好處顯而易見:模擬輸入帶寬從根本上得以擴(kuò)展,高頻線性度顯著改善,并且與單獨(dú)的RF ADC性能相比,THA-ADC組件的高頻SNR得到改進(jìn)。
THA特性及概述
ADI的THA系列產(chǎn)品可以在18 GHz帶寬范圍內(nèi)提供精密信號(hào)采樣,在DC至超過10 GHz的輸入頻率范圍內(nèi)具有9到10位線性度、1.05 mV噪聲和< 70 fs的隨機(jī)孔徑抖動(dòng)性能。該器件可以4 GSPS工作,動(dòng)態(tài)范圍損失極小,具體型號(hào)包括HMC661 和 HMC1061。這些跟蹤保持 放大器可用于擴(kuò)展高速模數(shù)轉(zhuǎn)換和信號(hào)采集系統(tǒng)的帶寬和/或高頻線性度。
以單級(jí)THA HMC661為例,產(chǎn)生的輸出由兩段組成。在輸出波形(正差分時(shí)鐘電壓)的采樣模式間隔中,器件成為一個(gè)單位增益放大器,在輸入帶寬和輸出放大器帶寬的約束下,它將輸入信號(hào)復(fù)制到輸出級(jí)。在正時(shí)鐘到負(fù)時(shí)鐘躍遷時(shí),器件以非常窄的采樣時(shí)間孔徑對(duì)輸入信號(hào)采樣,并且在負(fù)時(shí)鐘間隔內(nèi),將輸出保持在一個(gè)相對(duì)恒定的代表采樣時(shí)刻信號(hào)的值。配合ADC進(jìn)行前端采樣時(shí),常常優(yōu)先使用單級(jí)器件(ADI 同時(shí)法布里了兩級(jí)THA 的型號(hào)HMC1061),原因是多數(shù)高速ADC已經(jīng)在內(nèi)部集成一個(gè)THA,其帶寬通常要小得多。因此,在ADC之前增加一個(gè)THA便構(gòu)成一個(gè)復(fù)合雙級(jí)組件(或一個(gè)三級(jí)組件,如果使用的是雙級(jí)HMC1061),THA在轉(zhuǎn)換器前面。采用同等技術(shù)和設(shè)計(jì)時(shí),單級(jí)器件的線性度和噪聲性能通常優(yōu)于雙級(jí)器件,原因是單級(jí)器件的級(jí)數(shù)更少。所以,單級(jí)器件常常是配合高速ADC進(jìn)行前端采樣的最佳選擇。
圖1. 采樣保持拓?fù)浣Y(jié)構(gòu):(1a) 單列,(1b) 雙列。
延遲映射THA和ADC
開發(fā)采樣保持器和ADC信號(hào)鏈的最困難任務(wù)之一,是在THA捕獲采樣事件的時(shí)刻與應(yīng)將其移到ADC上以對(duì)該事件重新采樣的時(shí)刻之 間設(shè)置適當(dāng)?shù)臅r(shí)序延遲。設(shè)置兩個(gè)高效采樣系統(tǒng)之間的理想時(shí)間差的過程被稱為延遲映射。
在電路板上完成該過程可能冗長(zhǎng)乏味,因?yàn)榧埫娣治隹赡懿粫?huì)考慮PCB板上時(shí)鐘走線傳播間隔造成的相應(yīng)延遲,內(nèi)部器件組延遲,ADC孔徑延遲,以及將時(shí)鐘分為兩個(gè)不同段所涉及到的相關(guān)電路(一條時(shí)鐘走線用于THA,另一條時(shí)鐘走線用于ADC)。設(shè)置THA和ADC之間延遲的一種方法是使用可變延遲線。這些器件可以是有源或無(wú)源的,目的是正確對(duì)準(zhǔn)THA采樣過程的時(shí)間并將其交給ADC進(jìn)行采樣。這保證了ADC對(duì)THA輸出波形的穩(wěn)定保持模式部分進(jìn)行采樣,從而準(zhǔn)確表示輸入信號(hào)。
如圖2所示, HMC856 可用來(lái)啟動(dòng)該延遲。它是一款5位QFN封裝,90 ps的固有延遲,步進(jìn)為3 ps或25ps ,32位的高速延時(shí)器。它的缺點(diǎn)是要設(shè)定/遍歷每個(gè)延遲設(shè)置。要使能新的延遲設(shè)置,HMC856上的每個(gè)位/引腳都需要拉至負(fù)電壓。因此,通過焊接下拉電阻在32種組合中找到最佳延遲設(shè)置會(huì)是一項(xiàng)繁瑣的任務(wù),為了解決這個(gè)問題,ADI使用串行控制的SPST開關(guān)和板外微處理器來(lái)幫助更快完成延遲設(shè)置過程。
圖2. 延遲映射電路。
為了獲得最佳延遲設(shè)置,將一個(gè)信號(hào)施加于THA和ADC組合,該信號(hào)應(yīng)在ADC帶寬范圍之外。本例中,我們選擇一個(gè)約10 GHz的信號(hào),并施加-6 dBFS的電平(在FFT顯示屏上捕獲)。延遲設(shè)置現(xiàn)在以二 進(jìn)制步進(jìn)方式掃描,信號(hào)的電平和頻率保持恒定。在掃描過程中顯示并捕獲FFT,收集每個(gè)延遲設(shè)置對(duì)應(yīng)的基波功率和無(wú)雜散動(dòng)態(tài)范圍 (SFDR) 數(shù)值。
結(jié)果如圖3a所示,基波功率、SFDR和SNR將隨所應(yīng)用的每個(gè)設(shè)置而變化。如圖所示,當(dāng)把采樣位置放在更好的地方(THA將樣本送至ADC的過程之中)時(shí),基波功率將處于最高水平,而SFDR應(yīng)處于最佳性能(即最低)。圖3b為延遲映射掃描的放大視圖,延遲設(shè)定點(diǎn)為671,即延遲應(yīng)該保持固定于此窗口/位置。請(qǐng)記住,延遲映射程序僅對(duì)系統(tǒng)的相關(guān)采樣頻率有效,如果設(shè)計(jì)需要不同的采樣時(shí)鐘,則需要重新掃描。本例中,采樣頻率為4 GHz,這是該信號(hào)鏈中使用的THA器件的最高采樣頻率。
圖3a. 每個(gè)延遲設(shè)置上信號(hào)幅度和SFDR性能的映射結(jié)果。
圖3b. 每個(gè)延遲設(shè)置上信號(hào)幅度和SFDR性能的映射結(jié)果(放大)。
針對(duì)大量原始模擬帶寬的前端設(shè)計(jì)
首先,如果應(yīng)用的關(guān)鍵目標(biāo)是處理10 GHz的帶寬,我們顯然應(yīng)考慮RF方式。請(qǐng)注意,ADC仍然是電壓型器件,不會(huì)考慮功率。這種情況下,"匹配"這個(gè)詞應(yīng)該謹(jǐn)慎使用。我們發(fā)現(xiàn),讓一個(gè)轉(zhuǎn)換器前端在每個(gè)頻率都與100 MSPS轉(zhuǎn)換器匹配幾乎是不可能的;高頻率帶寬的RF ADC不會(huì)有太大的不同,但挑戰(zhàn)依舊。術(shù)語(yǔ)"匹配"應(yīng)表示在前端設(shè)計(jì)中能產(chǎn)生最佳結(jié)果的優(yōu)化。這是一個(gè)無(wú)所不包的術(shù)語(yǔ),其中,輸入阻抗、交流性能 (SNR/SFDR)、信號(hào)驅(qū)動(dòng)強(qiáng)度或輸入驅(qū)動(dòng)、帶寬以及通帶平坦度,這些指標(biāo)都能產(chǎn)生該特定應(yīng)用的最佳結(jié)果。
最終,這些參數(shù)共同定義了系統(tǒng)應(yīng)用的匹配性能。開始寬帶前端設(shè)計(jì)時(shí),布局可能是關(guān)鍵,同時(shí)應(yīng)當(dāng)最大限度地減少器件數(shù)量,以降低兩個(gè)相鄰IC之間的損耗。為了達(dá)到最佳性能,這兩方面均非常重要。將模擬輸入網(wǎng)絡(luò)連接在一起時(shí)務(wù)必小心。走線長(zhǎng)度以及匹配是最重要的,還應(yīng)盡量減少過孔數(shù)量,如圖4所示。
圖4. THA和ADC布局。
信號(hào)通過差分模式連接到THA輸入(我們同時(shí)是也提供單端射頻信號(hào)輸入的參考設(shè)計(jì)鏈路),形成單一前端網(wǎng)絡(luò)。為了最大限度地減少過孔數(shù)量和總長(zhǎng)度,我們?cè)谶@里特別小心,讓過孔不經(jīng)過這兩條模擬輸入路徑,并且?guī)椭窒呔€連接中的任何線腳。
最終的設(shè)計(jì)相當(dāng)簡(jiǎn)單,只需要注意幾點(diǎn),如圖5所示。所使用的0.01 F電容是寬帶類型,有助于在較寬頻率范圍內(nèi)保持阻抗平坦。典型的成品型0.1 F電容無(wú)法提供平坦的阻抗響應(yīng),通常會(huì)在通帶平坦度響應(yīng)中引起較多紋波。THA輸出端和ADC輸入端的5和10串聯(lián)電阻,有助于減少THA輸出的峰化,并最大限度地降低ADC自身內(nèi)部采樣電容網(wǎng)絡(luò)的殘余電荷注入造成的失真。然而,這些值需要謹(jǐn)慎地選擇,否則會(huì)增加信號(hào)衰減并迫使THA提高驅(qū)動(dòng)強(qiáng)度,或者設(shè)計(jì)可能無(wú)法利用ADC的全部量程。
最后討論差分分流端接。當(dāng)將兩個(gè)或更多轉(zhuǎn)換器連接在一起時(shí),這點(diǎn)至關(guān)重要。通常,輕型負(fù)載(例如輸入端有1 k負(fù)載)有助于保持線性并牽制混響頻率。分流器的120 分流負(fù)載也有此作用,但會(huì)產(chǎn)生更多實(shí)際負(fù)載,本例中為50 ,這正是THA希望看到并進(jìn)行優(yōu)化的負(fù)載。
圖5. THA和ADC前端網(wǎng)絡(luò)及信號(hào)鏈。
現(xiàn)在看結(jié)果!檢查圖6中的信噪比或SNR,可以看出在15 GHz范圍上可以實(shí)現(xiàn)8位的ENOB(有效位數(shù))。這是相當(dāng)不錯(cuò)的,想想對(duì)于相同性能的13 GHz示波器,您可能支付了12萬(wàn)美元。當(dāng)頻率向L、S、C和X波段移動(dòng)時(shí),集成帶寬(即噪聲)和抖動(dòng)限制開始變得顯著,因此我們看到性能出現(xiàn)滾降。
還應(yīng)注意,為了保持THA和ADC之間的電平恒定,ADC的滿量程輸入通過SPI寄存器內(nèi)部更改為1.0 V p-p。這有助于將THA保持在線性區(qū)域內(nèi),因?yàn)槠渥畲筝敵鰹?.0 V p-p差分。
圖6. –6 dBFS時(shí)的SNRFS/SFDR性能結(jié)果。
同時(shí)顯示了線性度結(jié)果或SFRD。這里,到8 GHz為止的線性度超過50 dBc,到10 GHz為止的線性度超過40 dBc。為在如此寬的頻率范圍上達(dá)到最佳線性度,此處的設(shè)計(jì)利用 AD9689模擬輸入緩沖電流設(shè)置特性進(jìn)行了優(yōu)化(通過SPI控制寄存器)。
圖7顯示了通帶平坦度,證明在RF ADC之前增加一個(gè)THA可以實(shí)現(xiàn) 10 GHz的帶寬,從而充分?jǐn)U展AD9689的模擬帶寬。
圖7. THA和ADC網(wǎng)絡(luò)及信號(hào)鏈—帶寬結(jié)果。
結(jié)語(yǔ)
對(duì)于那些需要在多GHz模擬帶寬上實(shí)現(xiàn)最佳性能的應(yīng)用,THA幾乎是必不可少的,至少目前是如此!RF ADC正在迅速趕上。很容易明白,在對(duì)較寬帶寬進(jìn)行采樣以覆蓋多個(gè)目標(biāo)頻帶時(shí),GSPS轉(zhuǎn)換器在理論上具有易用性優(yōu)勢(shì),可以消除前端RF帶上的一個(gè)或多個(gè)向下混頻級(jí)。但是,實(shí)現(xiàn)更高范圍的帶寬可能會(huì)帶來(lái)設(shè)計(jì)挑戰(zhàn)和維護(hù)問題。