高溫超導(dǎo)技術(shù)在微磁傳感器中應(yīng)用
發(fā)布時(shí)間:2018-11-28 責(zé)任編輯:wenwei
【導(dǎo)讀】超高精度磁傳感器在生物磁測(cè)量、地磁導(dǎo)航、天文觀測(cè)、基礎(chǔ)物理特性分析等科研領(lǐng)域具有廣泛的應(yīng)用前景和迫切需求。比如,在生物磁信號(hào)探測(cè)領(lǐng)域,典型的心臟磁場(chǎng)為 10-9—10-10T,腦磁場(chǎng)為10-11—10-12 T,目前能夠滿足檢測(cè)pT(10-12 T)量級(jí)測(cè)量精度的磁傳感器有光泵磁傳感器、探測(cè)線圈磁傳感器、磁通門傳感器、超導(dǎo)量子干涉器件(superconducting quantum interference device,SQUID)傳感器等。
1、引言
超高精度磁傳感器在生物磁測(cè)量、地磁導(dǎo)航、天文觀測(cè)、基礎(chǔ)物理特性分析等科研領(lǐng)域具有廣泛的應(yīng)用前景和迫切需求。比如,在生物磁信號(hào)探測(cè)領(lǐng)域,典型的心臟磁場(chǎng)為 10-9—10-10T,腦磁場(chǎng)為10-11—10-12 T,目前能夠滿足檢測(cè)pT(10-12 T)量級(jí)測(cè)量精度的磁傳感器有光泵磁傳感器、探測(cè)線圈磁傳感器、磁通門傳感器、超導(dǎo)量子干涉器件(superconducting quantum interference device,SQUID)傳感器等。其中SQUID傳感器是目前探測(cè)精度最高的磁傳感器,可以達(dá)到10-14T(高溫超導(dǎo)SQUID)和10-15 T(低溫超導(dǎo)SQUID),但是由于設(shè)計(jì)制作和使用的復(fù)雜性,限制了其大規(guī)模應(yīng)用。而探測(cè)線圈磁傳感器、磁通門傳感器和光泵傳感器難于小型化,因此也不適用于微電子的集成系統(tǒng)。只有巨磁阻傳感器和巨磁阻抗傳感器既可以滿足高靈敏探測(cè)的要求,又可以兼顧高性能和微型化,并且與微機(jī)電系統(tǒng)(micro electro-mechanical systems,MEMS)技術(shù)兼容,近年來受到更多關(guān)注。
而在近十幾年間,隨著薄膜技術(shù)的發(fā)展,高溫超導(dǎo)技術(shù)得到了極大的提高,將巨磁阻技術(shù)或巨磁阻抗技術(shù)結(jié)合高溫超導(dǎo)薄膜結(jié)構(gòu),構(gòu)成了一種新的磁傳感器,這種磁傳感器具有可以媲美SQUID 的測(cè)量精度,并且在微型化方面具有SQUID無法具備的優(yōu)越性,可以預(yù)見,這種技術(shù)的發(fā)展將會(huì)促進(jìn)磁傳感器領(lǐng)域的發(fā)展。但是由于巨磁電阻(giant magnetoresistance,GMR)元件本身的復(fù)雜性,其高達(dá)10 余層的膜結(jié)構(gòu)實(shí)現(xiàn)起來需要非常精確的參數(shù)控制和結(jié)構(gòu)設(shè)計(jì),難度較大。復(fù)合結(jié)構(gòu)中超導(dǎo)環(huán)部分的尺寸直徑達(dá)到2.5 cm 以上,這樣會(huì)增大系統(tǒng)體積和耦合面積,從而增加引入的磁通。理論分析方面,GMR元件忽略了材料的電感變化,因此探測(cè)精度也沒有巨磁阻抗(giant magneto impedance,GMI)器件高,綜合上述因素,GMI/超導(dǎo)復(fù)合結(jié)構(gòu)可以兼顧小型化和制作上的方便性,并且可以達(dá)到更高的精度。
本文下面分三部分對(duì)高溫超導(dǎo)技術(shù)在微磁傳感器方面的應(yīng)用與發(fā)展進(jìn)行闡述。
2、高溫超導(dǎo)量子干涉器件傳感器原理、應(yīng)用與發(fā)展
超導(dǎo)量子干涉儀是基于超導(dǎo)約瑟夫森(Josephson)結(jié)效應(yīng)制作的磁傳感器,因?yàn)槠錁O高的探測(cè)精度,廣泛用于生物磁測(cè)量、無損探傷、軍事探潛等領(lǐng)域,是高溫超導(dǎo)最早走向?qū)嵱没念I(lǐng)域之一。而高溫超導(dǎo)技術(shù)的發(fā)展提高了SQUID的工作溫度,另一方面,高溫超導(dǎo)薄膜技術(shù)的發(fā)展也提高了SQUID 的靈敏度。本節(jié)將主要說明SQUID的測(cè)量原理及高溫SQUID近幾年的發(fā)展,簡單闡述近期高溫超導(dǎo)SQUID的應(yīng)用。
SQUID實(shí)質(zhì)是基于約瑟夫森結(jié)效應(yīng)的一種將磁通轉(zhuǎn)化為電壓的磁通傳感器,利用了超導(dǎo)約瑟夫森結(jié)效應(yīng)和磁通量子化現(xiàn)象。如圖1 所示,被一薄勢(shì)壘層分開的兩塊超導(dǎo)體構(gòu)成一個(gè)約瑟夫森隧道結(jié)。當(dāng)含有約瑟夫森隧道結(jié)的超導(dǎo)體閉合環(huán)路被適當(dāng)大小的電流I 偏置后,會(huì)呈現(xiàn)一種宏觀量子干涉現(xiàn)象,即隧道結(jié)兩端的電壓是隨閉合環(huán)路環(huán)孔中的磁通量Φ變化的周期性函數(shù),其周期為磁通量變化的最小單位(磁通量量子Φ0)。這種現(xiàn)象稱為超導(dǎo)量子干涉現(xiàn)象。
圖1 超導(dǎo)量子干涉儀的原理示意圖(I 為通過超導(dǎo)體閉合環(huán)路的總電流,Ia和Ib為通過上下約瑟夫森隧道結(jié)的直流電流,Φ為外加磁通)
從發(fā)現(xiàn)約瑟夫森結(jié)效應(yīng)以來,人們很快就利用這種效應(yīng)制成了利用直流電流進(jìn)行偏置的超導(dǎo)量子干涉器件(DC-SQUID),這種器件實(shí)質(zhì)上就是一種磁通檢測(cè)器。隨后,又發(fā)明了利用約瑟夫森結(jié)和超導(dǎo)體連成閉合回路,再用射頻電流進(jìn)行偏置的超導(dǎo)量子干涉器件(RF-SQUID),這種結(jié)構(gòu)更容易制備,并且與室溫電路的耦合問題更易于解決,其靈敏度也比當(dāng)時(shí)的DC-SQUID高。1976年,J.Clarke 等人研制成功薄膜隧道結(jié)DC-SQUID,其測(cè)量原理如圖2 所示,利用線圈之間的互感諧振,解決了與室溫電路的耦合問題,其靈敏度比RF-SQUID要高一個(gè)數(shù)量級(jí)。
圖2 DC-SQUID的電路測(cè)量示意圖(Φex為環(huán)內(nèi)總磁通,Ibias為偏置電流,Vout為輸出電壓)
低溫超導(dǎo)量子干涉器大多數(shù)是直流SQUID,而高溫超導(dǎo)薄膜可以制成直流SQUID 或者射頻SQUID,現(xiàn)在一般為YBCO薄膜材料制成。這種傳感器設(shè)計(jì)的難點(diǎn)在于沒有成熟的高溫約瑟夫森結(jié)工藝,并且在77 K溫度下,熱噪聲對(duì)傳感器的測(cè)量干擾很大。目前比較成熟的制作高溫SQUID的方式是使用SrTiO3 或者LaAlO3 晶體作為襯底,在它們的雙晶或者含有臺(tái)階的單晶基片上外延生長YBCO薄膜,再用半導(dǎo)體光刻技術(shù)將SQUID的圖形刻在YBCO薄膜上(圖3),制成SQUID 器件。
圖3 高溫超導(dǎo)DC-SQUID的原理示意圖
目前,對(duì)高溫SQUID的研究主要集中在兩個(gè)方面: 一是高溫超導(dǎo)SQUID基本理論的研究,主要指高溫超導(dǎo)SQUID 電壓與電流特性,電壓與磁通之間的變換系數(shù)等數(shù)值仿真;二是各種高溫超導(dǎo)SQUID 器件的研制以及在相關(guān)領(lǐng)域?qū)崿F(xiàn)對(duì)微弱磁場(chǎng)信號(hào)的檢測(cè)。
近幾年,超導(dǎo)薄膜技術(shù)的提高使得薄膜質(zhì)量有顯著提高,將超導(dǎo)薄膜的磁通噪聲減小了近8個(gè)數(shù)量級(jí)。通過使用超導(dǎo)環(huán)的焊接技術(shù)、YBCO的微橋技術(shù)以及多層膜的復(fù)合技術(shù),使得高溫超導(dǎo)的噪聲系數(shù)提高到1 kHz 時(shí)的9.7 fT/ √Hz ,而在1 Hz 時(shí)能達(dá)到53 fT/ √Hz 。
Yang等人采用諧振型耦合電路結(jié)合常規(guī)銅拾取線圈,將SQUID的磁場(chǎng)噪聲降低到26 fT/ √Hz 。Kang 等人將兩個(gè)SQUID 串聯(lián),其中一個(gè)作為信號(hào)檢測(cè)系統(tǒng),另外一個(gè)作為參考信號(hào)端,構(gòu)成多通道雙弛豫振蕩的SQUID 磁傳感器和平面梯度計(jì),在100 Hz 下,其噪聲分別達(dá)到3 fT/ √Hz 和4 fT/ √Hz 。而Kawai集成了9 通道的平面式梯度計(jì),噪聲水平達(dá)到10 fT/ √Hz,梯度計(jì)結(jié)構(gòu)可以避免使用昂貴的磁屏蔽室,對(duì)SQUID的廣泛應(yīng)用十分有利。
3、GMR/超導(dǎo)復(fù)合磁傳感器原理、應(yīng)用與發(fā)展
GMR傳感器是一種通過金屬薄層將軟磁層和硬磁層分離開的結(jié)構(gòu),其發(fā)展是隨著各向異性磁阻(MR)傳感器的發(fā)展一起發(fā)展的。要了解GMR傳感器與超導(dǎo)復(fù)合傳感器的發(fā)展,首先要分析GMR傳感器的機(jī)理與現(xiàn)狀,然后在此基礎(chǔ)上闡述超導(dǎo)復(fù)合結(jié)構(gòu)。
3.1 GMR 磁傳感器的原理
由磁性材料制作的導(dǎo)體的電阻在磁場(chǎng)作用下發(fā)生變化的現(xiàn)象叫做磁阻現(xiàn)象,這種現(xiàn)象被發(fā)現(xiàn)已經(jīng)100 多年了。R.P. Hunt 發(fā)現(xiàn),對(duì)坡莫合金薄膜施加的磁場(chǎng)方向改變90°時(shí),薄膜的電阻有2%的變化,可以作為磁傳感器的制作材料。更重要的是,這種薄膜可以制成微型化傳感器,當(dāng)磁化方向設(shè)置成單一方向時(shí),傳感器的噪聲會(huì)非常小,只受到熱噪聲的影響,其信噪比可以達(dá)到97 dB。在磁記錄方面的應(yīng)用中,大約有20 dB的磁記錄噪聲,因此,MR 技術(shù)遠(yuǎn)遠(yuǎn)優(yōu)于其他方式,MR技術(shù)隨之被廣泛應(yīng)用于硬盤驅(qū)動(dòng)數(shù)據(jù)存儲(chǔ),并在微型化方面也有了很多應(yīng)用。
巨磁阻抗效應(yīng)最先是由Baibich等人提出的。他發(fā)現(xiàn)在低溫條件下(4 K),如果將鐵、鉻多層膜放置在上千高斯磁場(chǎng)中,其阻抗會(huì)發(fā)生50%以上的變化。由于在磁記錄重放時(shí)磁頭和小磁場(chǎng)檢測(cè)方面的需要,使得利用巨磁阻抗效應(yīng)的設(shè)備飛速發(fā)展。如今GMR磁傳感器的尺寸能夠達(dá)到微米級(jí)別,并能在室溫環(huán)境下產(chǎn)生大于10%/Oe 的電阻變化。
不同GMR 系統(tǒng)的自旋軸其特征是不一樣的,例如Baibich 等人的GMR系統(tǒng)是Fe/Cr 交替的多層膜,當(dāng)所有這些層的磁化方向相同時(shí),一半傳導(dǎo)電流的自旋極化電子可以通過夾層移動(dòng)而沒有明顯的磁性材料散射現(xiàn)象(低電阻),而交替層的磁化方向反轉(zhuǎn)時(shí),所有的電子都會(huì)發(fā)生散射,不管這些電子是提速還是降速。四層薄膜的磁化軸方向要簡單得多,反鐵磁性的交替膜(例如Mn,F(xiàn)e)復(fù)合到Co 膜上,表明磁化方向在橫軸方向,第二層磁化膜與軟磁層NiFe 層通過一個(gè)很薄的導(dǎo)電層(Cu 層)分離開,這樣的磁性薄膜具有可變的磁化方向,其兩層膜之間的磁化角的改變引起了散射電子通過組合結(jié)構(gòu)方式的多樣性,這就使得這種結(jié)構(gòu)的電阻變化比簡單的MR電阻變化要大得多。
在靈敏度方面,GMR傳感器在100 Hz 磁場(chǎng)中的噪聲大約為20 pT/ √Hz ,大于1 kHz 時(shí)的約瑟夫森噪聲極限(小于6 pT/ √Hz )。
3.2 GMR/超導(dǎo)復(fù)合磁傳感器的發(fā)展現(xiàn)狀
2004 年法國科學(xué)家Myrian 等在Science 上發(fā)表文章,報(bào)道了一種GMR/超導(dǎo)復(fù)合高精度磁傳感器,它可以測(cè)量30 fT 量級(jí)的微弱磁場(chǎng),這已經(jīng)達(dá)到高溫超導(dǎo)SQUID的測(cè)量精度。其原理如圖4 所示,其結(jié)構(gòu)包含一個(gè)GMR磁傳感器和一個(gè)特制的超導(dǎo)環(huán),超導(dǎo)環(huán)含有微橋結(jié)構(gòu),具有微橋結(jié)構(gòu)的超導(dǎo)環(huán)具備放大磁場(chǎng)的作用。
圖4 GMR/復(fù)合磁強(qiáng)計(jì)結(jié)構(gòu)
超導(dǎo)環(huán)磁場(chǎng)放大是通過一個(gè)具有微米級(jí)微橋結(jié)構(gòu)的大面積(幾毫米寬)超導(dǎo)環(huán)實(shí)現(xiàn)的。當(dāng)被測(cè)磁場(chǎng)垂直施加在此環(huán)時(shí),在超導(dǎo)體中產(chǎn)生的超導(dǎo)電流會(huì)阻止磁通的進(jìn)入,當(dāng)超導(dǎo)電流通過微橋結(jié)構(gòu)時(shí),局部電流密度升高,該電流產(chǎn)生一定強(qiáng)度遠(yuǎn)高于被測(cè)磁場(chǎng)的磁場(chǎng)強(qiáng)度。此時(shí),將一個(gè)磁敏元件如GMR 磁傳感器,放置于此環(huán)微橋結(jié)構(gòu)的上部或者下部,就可以檢測(cè)被放大的磁場(chǎng)。圖5為理論計(jì)算得到的超導(dǎo)環(huán)周圍磁場(chǎng)分布圖。這幅圖中利用GMR 磁傳感器測(cè)量微橋周圍較強(qiáng)的磁場(chǎng),推算出相對(duì)微弱的外界磁場(chǎng),從而提高傳感器的探測(cè)靈敏度。圖中環(huán)的直徑約為3 mm,微橋結(jié)構(gòu)處的超導(dǎo)環(huán)寬度約為25 μm,根據(jù)理論計(jì)算,其磁場(chǎng)大概被放大120 倍,經(jīng)過磁光設(shè)備實(shí)際檢測(cè),其磁場(chǎng)被放大100 倍,用超導(dǎo)環(huán)復(fù)合了具有3.11%/mT靈敏度的GMR磁傳感器之后,傳感器的靈敏度大概為311%/mT。
圖5 超導(dǎo)環(huán)周圍磁場(chǎng)分布
在這個(gè)結(jié)構(gòu)中,GMR傳感器是NiFe 層耦合CoFe層,硬磁層由反鐵磁性層(如IrMn,MnPt)耦合鐵磁性層(CoFe)。整個(gè)層結(jié)構(gòu)的電阻隨兩個(gè)層的磁化軸之間的角度變化,工業(yè)條件下制作的150 mm的晶片上可以得到6%/mT—8%/mT 的電阻變化,微米尺寸的MR傳感器可以得到5%/mT的電阻變化。在原型機(jī)里,得到電阻的變化為2.13%/mT。
這個(gè)結(jié)構(gòu)中的主要噪聲包括熱噪聲和1/f 噪聲。室溫下的熱噪聲NT可以由下式給出:
NT = 2[(kBTR )1/2] , (1)式中kB是玻爾茲曼常數(shù),值為1.3806505 ×10-23,T 是溫度,R 是電阻值,當(dāng)噪聲為350 pT/ √Hz時(shí),這個(gè)微橋結(jié)構(gòu)的電流為1 mA。在4.2 K 時(shí),這個(gè)微橋的靈敏度為40 pT/√ Hz 。測(cè)量電阻時(shí),信號(hào)正比于感應(yīng)電流,因此,該結(jié)構(gòu)的靈敏度可以通過通入大電流的方式相應(yīng)提高,但是要注意大電流所帶來的熱效應(yīng)。
在低頻時(shí),噪聲主要由1/f 噪聲決定,它使這一傳感器的探測(cè)能力降低到幾百fT/ √Hz 。表1 給出了在4 K和77 K溫度環(huán)境中的熱噪聲值。
表1 復(fù)合磁強(qiáng)計(jì)的低溫噪聲
和SQUID一樣,復(fù)合傳感器對(duì)較大范圍的頻率信號(hào)都具有平坦的頻率響應(yīng),因此有希望應(yīng)用于共振信號(hào)的探測(cè)。在低磁場(chǎng)中,相應(yīng)的低共振頻率下,標(biāo)準(zhǔn)調(diào)諧線圈有很低的靈敏度,因而平坦的頻率響應(yīng)變得更敏感。該課題組還制作了一套核磁共振裝置,其偏振磁場(chǎng)只有幾mT,信號(hào)檢測(cè)使用了在液氮中冷卻的復(fù)合傳感器。圖6展示了水樣品在一個(gè)自旋回波序列期間的相位和核磁共振信號(hào)積分的檢測(cè)結(jié)果(頻率320 kHz,8 mT)。
圖6 核磁共振的信號(hào)在320 kHz的幅值響應(yīng)
此外,該課題組還于2012 年提出利用GMR/超導(dǎo)復(fù)合結(jié)構(gòu)陣列實(shí)現(xiàn)多通道腦磁成像(圖7),并進(jìn)行了平面梯度配置和測(cè)試,這種模式可以有效地降低環(huán)境中50 Hz 的噪聲信號(hào),并用心磁信號(hào)模擬腦磁信號(hào)進(jìn)行了測(cè)試。實(shí)驗(yàn)證實(shí),該傳感器在測(cè)量的實(shí)時(shí)性方面有顯著的優(yōu)勢(shì),但將其真正用于腦磁測(cè)量,還需進(jìn)一步提高傳感器的靈敏度。
圖7 GMR/超導(dǎo)復(fù)合磁傳感器的腦磁成像設(shè)備原理框圖和噪聲分析
4、GMI/超導(dǎo)復(fù)合磁傳感器的原理、應(yīng)用與發(fā)展
自從1992 年日本名古屋大學(xué)的K.Mohri 等人首次在CoFeSiB 軟磁非晶絲中發(fā)現(xiàn)巨磁阻抗效應(yīng),人們?cè)诜蔷?、納晶帶、薄膜、三明治/多層膜中相繼發(fā)現(xiàn)GMI效應(yīng),這為GMI效應(yīng)在傳感器中的實(shí)際應(yīng)用提供了更多的材料選擇。
4.1 GMI/超導(dǎo)復(fù)合磁傳感器的原理
GMI 即巨磁阻抗效應(yīng),是1992 年日本科學(xué)家K. Mohri 在CoFeSiB 軟磁非晶絲中通入交變激勵(lì)電流,其阻抗值隨沿著縱向施加的外磁場(chǎng)變化而發(fā)生顯著變化的現(xiàn)象。GMI傳感器的發(fā)現(xiàn)為研制一種新型高靈敏度傳感器提供了可能。在巨磁阻抗效應(yīng)發(fā)現(xiàn)之初,其研究主要集中于非晶絲,但是非晶絲相對(duì)較脆,容易斷裂,這就給絲傳感器的制備和使用帶來難度。而非晶帶和薄膜在制備和使用上相對(duì)簡單,并且薄膜結(jié)構(gòu)更易于實(shí)現(xiàn)小型化。對(duì)于薄膜來說,單層膜的GMI效應(yīng)比較小,主要是因?yàn)閱螌幽さ内吥w效應(yīng)比較小。為了提高GMI效應(yīng),Panina 又提出一種三明治結(jié)構(gòu)(F/M/F),F(xiàn)為鐵磁材料層(通常為CoSiB,CoFeSiB,F(xiàn)eSiCuNb 等),M 表示導(dǎo)體材料層(通常為Cu,Ag,Au)。由于中間導(dǎo)體層M 的存在,三明治結(jié)構(gòu)的電阻率比較低,只要鐵磁層F 的電感發(fā)生較大的變化,即可獲得較大的巨磁阻抗效應(yīng)。MoriKawa等人制作的三明治膜CoSiB/Ag/CoSiB 的阻抗變化率可以達(dá)到440 %,靈敏度達(dá)到49 %/Oe,偏置磁場(chǎng)強(qiáng)度為9 Oe,激勵(lì)頻率為10 MHz,其三明治結(jié)構(gòu)如圖8(a)所示。為了進(jìn)一步增強(qiáng)GMI效應(yīng),Morikawa等人又做了帶有絕緣層的多層膜結(jié)構(gòu)(CoSiB/SiO2/Ag/SiO2/CoSiB),其結(jié)構(gòu)示意圖如圖8(b)所示。其阻抗變化率可以達(dá)到700%,靈敏度達(dá)到300 %/Oe,這種增強(qiáng)效應(yīng)的原理被解釋為絕緣層SiO2的存在導(dǎo)致激勵(lì)電流從導(dǎo)體層M流過而不從鐵磁層F流過導(dǎo)致。
圖8 (a)三明治結(jié)構(gòu)示意圖;(b)帶有絕緣層的多層膜結(jié)構(gòu)
通常GMI磁傳感器是基于測(cè)量阻抗幅值的變化制作的,而近期巴西科學(xué)家Silva 等人利用測(cè)量GMI器件的相位隨磁場(chǎng)的變化也可以制作更高精度的磁傳感器。這種磁傳感器測(cè)量的是阻抗相位隨弱磁場(chǎng)變化的特性,有望將GMI磁傳感器的靈敏度提高10 倍,并且非常適合于制作小型化傳感器。經(jīng)過理論仿真,這種傳感器的靈敏度可以達(dá)到887.91 V/Oe。本課題組對(duì)GMI 磁傳感器也做了相關(guān)研究,并研究了激勵(lì)源頻率、激勵(lì)電流幅值、直流偏置等對(duì)磁傳感器靈敏度的影響,結(jié)果表明,基于相位的GMI磁傳感器減小了激勵(lì)電流頻率到120 kHz 左右,增加了傳感器的靈敏度,在微弱磁場(chǎng)測(cè)量方面具有顯著優(yōu)勢(shì)。
4.2 GMI/超導(dǎo)復(fù)合磁傳感器的原理
GMR/超導(dǎo)復(fù)合磁傳感器的精度已經(jīng)到達(dá)30 fT量級(jí),但是進(jìn)一步提高精度就需要將外磁場(chǎng)進(jìn)一步放大,理論計(jì)算需放大到4000 倍以上,需要的超導(dǎo)樣品直徑需達(dá)到2.5 cm。這樣增大了系統(tǒng)體積和耦合難度,而理論分析表明,GMI元件的探測(cè)精度比GMR傳感器高幾個(gè)數(shù)量級(jí),并且GMI元件的多層膜制作也比GMR 膜簡單,一般是3層,最多5 層。而GMR元件的多層膜結(jié)構(gòu)則多達(dá)10 余層,制作要求也較高。基于上述情況,采用高靈敏GMI 多層膜元件代替GMR 元件的傳感器,既可以兼顧小型化和制作上的可行性,又可以達(dá)到超高精度。這種思路由本課題組首先提出并獲得國家自然科學(xué)基金資助。
本課題組提出了一種GMI/超導(dǎo)復(fù)合高精度磁傳感器,理論上可以測(cè)量fT 量級(jí)以上的微弱磁場(chǎng),這已經(jīng)達(dá)到了高溫超導(dǎo)SQUID 的測(cè)量精度。其原理如圖9 所示,該結(jié)構(gòu)包含一個(gè)GMI薄膜磁傳感器和一個(gè)含有微橋結(jié)構(gòu)的超導(dǎo)環(huán)。
圖9 GMI/復(fù)合磁強(qiáng)計(jì)結(jié)構(gòu)(a)整體結(jié)構(gòu)圖;(b)放大結(jié)構(gòu)圖
超導(dǎo)環(huán)具有磁場(chǎng)放大作用,當(dāng)施加外磁場(chǎng)時(shí),微橋附近磁場(chǎng)直接數(shù)倍于外界探測(cè)磁場(chǎng),而GMI 敏感器件的阻抗會(huì)隨外界磁場(chǎng)的變化而變化,將磁信號(hào)轉(zhuǎn)化成電信號(hào),從而利用磁敏感器件探測(cè)出微橋磁場(chǎng),就可以推算出外界磁場(chǎng)實(shí)現(xiàn)磁場(chǎng)的測(cè)量。
在前期工作中,本課題組利用雙離子束沉積薄膜技術(shù)(dual-ion beam sputtering deposition films technology,DIBSD)制備CoSiB薄膜,探究不同參數(shù)下GMI薄膜的阻抗變化比,單層膜的最大變化可以達(dá)到15.8 %/Oe。同時(shí)嘗試?yán)没瘜W(xué)溶液腐蝕法和離子束刻蝕法,加工具備微橋結(jié)構(gòu)的高溫超導(dǎo)超導(dǎo)環(huán),并取得一定的成果。利用交流磁化率方法和電輸運(yùn)方法,搭建了兩種高溫超導(dǎo)轉(zhuǎn)變溫度測(cè)量裝置,對(duì)超導(dǎo)環(huán)是否進(jìn)入超導(dǎo)態(tài)進(jìn)行了測(cè)試。搭建高溫超導(dǎo)臨界電流密度三次諧波無損測(cè)量裝置,對(duì)超導(dǎo)環(huán)的性能進(jìn)行測(cè)試。并初步搭建出GMI傳感器的原理樣機(jī),通過電路設(shè)計(jì)提高傳感器的靈敏度,目前可以達(dá)到219 mV/Oe。
5、結(jié)束語
目前,SQUID 磁傳感器仍然是所有磁傳感器技術(shù)中靈敏度最高的設(shè)備。然而,盡管在技術(shù)上仍然有所進(jìn)步,在過去的幾十年中,基于SQUID技術(shù)的商業(yè)應(yīng)用仍然有限。SQUID系統(tǒng)的高價(jià)格是首要的限制因素。隨著高溫超導(dǎo)薄膜技術(shù)的發(fā)展, 為SQUID 技術(shù)的廣泛應(yīng)用提供了條件。GMR磁傳感器和GMI 磁傳感器的發(fā)展,特別是多層膜結(jié)構(gòu)薄膜技術(shù)的發(fā)展,為磁傳感器的微型化提供了可能,而GMR/超導(dǎo)復(fù)合結(jié)構(gòu)和GMI/超導(dǎo)復(fù)合結(jié)構(gòu)的提出,則提供了一種超越或替代SQUID測(cè)量精度的方法,并且在微型化方面具備SQUID無法比擬的優(yōu)勢(shì),預(yù)期可以獲得較大的發(fā)展和應(yīng)用。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級(jí)電容的“外衣”,看看超級(jí)電容“超級(jí)”在哪兒
- DigiKey 誠邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池
歐勝
耦合技術(shù)
排電阻
排母連接器
排針連接器
片狀電感
偏光片
偏轉(zhuǎn)線圈
頻率測(cè)量儀
頻率器件
頻譜測(cè)試儀
平板電腦