FPGA的電源管理
發(fā)布時(shí)間:2018-05-07 來源:Frederik Dostal 責(zé)任編輯:wenwei
【導(dǎo)讀】為FPGA應(yīng)用設(shè)計(jì)優(yōu)秀電源管理解決方案不是一項(xiàng)簡單的任務(wù),相關(guān)技術(shù)討論有很多。本文一方面旨在找到正確解決方案并選擇最合適的電源管理產(chǎn)品,另一方面則是如何優(yōu)化實(shí)際解決方案以用于FPGA。
找到合適的電源解決方案
尋找為FPGA供電的最佳解決方案并不簡單。許多供應(yīng)商以適合為FPGA供電的名義推銷某些產(chǎn)品。為FPGA供電的DC-DC轉(zhuǎn)換器選擇有何特定要求?其實(shí)并不多。一般而言,所有電源轉(zhuǎn)換器都可用來為FPGA供電。推薦某些產(chǎn)品通常是基于以下事實(shí):許多FPGA應(yīng)用需要多個(gè)電壓軌,例如用于FPGA內(nèi)核和I/O,還可能需要額外的電壓軌來用于DDR存儲器。將多個(gè)DC-DC轉(zhuǎn)換器全部集成到單個(gè)穩(wěn)壓器芯片中的PMIC(電源管理集成電路)常常是首選。
一種為特定FPGA尋找優(yōu)秀供電解決方案的流行方法是使用許多FPGA供應(yīng)商都提供的已有電源管理參考設(shè)計(jì)。這對于優(yōu)化設(shè)計(jì)來說是一個(gè)很好的入門方式。但此類設(shè)計(jì)往往需要修改,因?yàn)镕PGA系統(tǒng)通常需要額外的電壓軌和負(fù)載,這些也需要供電。在參考設(shè)計(jì)上增加一些東西常常也是必要的。還有一件事需要考慮,那就是FPGA的輸入電源不是固定的。輸入電壓在很大程度上取決于實(shí)際的邏輯電平以及FPGA所實(shí)現(xiàn)的設(shè)計(jì)。完成對電源管理參考設(shè)計(jì)的修改之后,它看起來將與最初的參考設(shè)計(jì)不同??赡苡腥藭?huì)辯稱,最好的解決方案是根本不用電源管理參考設(shè)計(jì),而是直接將所需的電壓軌和電流輸入到電源管理選型與優(yōu)化工具中,例如ADI公司的 LTpowerCAD等。
圖1. 通過LTpowerCAD工具選擇合適的DC-DC轉(zhuǎn)換器來為FPGA供電。
LTpowerCAD可用來為各個(gè)電壓軌提供電源解決方案。它還提供一系列參考設(shè)計(jì),以讓設(shè)計(jì)人員快速入門。LTpowerCAD可以從ADI公司網(wǎng)站免費(fèi)下載。
一旦選擇了電源架構(gòu)和各個(gè)電壓轉(zhuǎn)換器,就需要選擇合適的無源元件來設(shè)計(jì)電源。做這件事時(shí),需要牢記FPGA的特殊負(fù)載要求。
它們分別是:
1.各項(xiàng)電流需求
2.電壓軌時(shí)序控制
3.電壓軌單調(diào)上升
4.快速電源瞬變
5.電壓精度
6.各項(xiàng)電流需求
FPGA的實(shí)際電流消耗在很大程度上取決于使用情況。不同的時(shí)鐘和不同的FPGA內(nèi)容需要不同的功率。因此,在FPGA系統(tǒng)的設(shè)計(jì)過程中,典型FPGA設(shè)計(jì)的最終電源規(guī)格必然會(huì)發(fā)生變化。FPGA制造商提供的功率估算工具有助于計(jì)算解決方案所需的功率等級。在構(gòu)建實(shí)際硬件之前,獲得這些信息會(huì)非常有用。但是,為了利用此類功率估算工具獲得有意義的結(jié)果,F(xiàn)PGA的設(shè)計(jì)必須最終確定,或者至少接近最終完成。
通常情況下,工程師設(shè)計(jì)電源時(shí)考慮的是最大FPGA電流。如果最終發(fā)現(xiàn)實(shí)際FPGA設(shè)計(jì)需要的功率更少,設(shè)計(jì)人員就會(huì)縮減電源。
電壓軌時(shí)序控制
許多FPGA要求不同電源電壓軌以特定順序上電。內(nèi)核電壓的供應(yīng)往往需要早于I/O電壓的供應(yīng),否則一些FPGA會(huì)被損壞。為了避免這種情況,電源需要按正確的順序上電。使用標(biāo)準(zhǔn)DC-DC轉(zhuǎn)換器上的使能引腳,可以輕松實(shí)現(xiàn)簡單的上電時(shí)序控制。然而,器件關(guān)斷通常也需要時(shí)序控制。僅執(zhí)行使能引腳時(shí)序控制,很難取得良好的結(jié)果。更好的解決辦法是使用具有高級集成時(shí)序控制功能的PMIC,例如 ADP5014。圖2中用紅色表示的特殊電路模塊支持調(diào)整上電和關(guān)斷時(shí)序。
圖2. ADP5014 PMIC集成了對靈活控制上電/關(guān)斷時(shí)序的支持。
圖3顯示了利用此器件實(shí)現(xiàn)的時(shí)序控制。通過ADP5014上的延遲(DL)引腳可以輕松調(diào)整上電和關(guān)斷時(shí)序的時(shí)間延遲。
如果使用多個(gè)單獨(dú)的電源,增加時(shí)序控制芯片便可實(shí)現(xiàn)所需的上電/關(guān)斷順序。一個(gè)例子是LTC2924,它既能控制DC-DC轉(zhuǎn)換器的使能引腳來打開和關(guān)閉電源,也能驅(qū)動(dòng)高端N溝道MOSFET來將FPGA與某個(gè)電壓軌連接和斷開。
圖3. 多個(gè)FPGA電源電壓的啟動(dòng)和關(guān)斷順序。
電壓軌單調(diào)上升
除了電壓時(shí)序之外,啟動(dòng)過程中還可能要求電壓單調(diào)上升。這意味著電壓僅線性上升,如圖4中的電壓A所示。此圖中的電壓B是電壓非單調(diào)上升的例子。在啟動(dòng)過程中,當(dāng)電壓上升到一定電平時(shí)負(fù)載開始拉大電流,就會(huì)發(fā)生這種情況。防止這種情況的一種辦法是延長電源的軟啟動(dòng)時(shí)間,并選擇能夠快速提供大量電流的電源轉(zhuǎn)換器。
圖4. 電壓A單調(diào)上升,電壓B非單調(diào)上升。
快速電源瞬變
FPGA的另一個(gè)特點(diǎn)是它會(huì)非常迅速地開始抽取大量電流。這會(huì)在電源上造成很高的負(fù)載瞬變。出于這個(gè)原因,許多FPGA需要大量的輸入電壓去耦。陶瓷電容非??拷赜迷谄骷腣CORE和GND引腳之間。高達(dá)1 mF的值非常常見。如此高電容有助于降低對電源提供非常高峰值電流的需求。但是,許多開關(guān)穩(wěn)壓器和LDO規(guī)定了最大輸出電容。FPGA的輸入電容要求可能超過電源允許的最大輸出電容。
電源不喜歡非常大的輸出電容,因?yàn)樵趩?dòng)期間,開關(guān)穩(wěn)壓器的輸出電容看來像是短路的。對此問題有一個(gè)解決辦法。較長的軟啟動(dòng)時(shí)間可以讓大電容組上的電壓穩(wěn)定地升高,電源不會(huì)進(jìn)入短路限流模式。
圖5. 很多FPGA的輸入電容要求。
一些電源轉(zhuǎn)換器不喜歡過大輸出電容的另一個(gè)原因是該電容值會(huì)成為調(diào)節(jié)環(huán)路的一部分。集成環(huán)路補(bǔ)償?shù)霓D(zhuǎn)換器不允許輸出電容過大,以防止穩(wěn)壓器的環(huán)路不穩(wěn)定。在高端反饋電阻上使用前饋電容常??梢杂绊懣刂骗h(huán)路,如圖6所示。
圖6. 當(dāng)沒有環(huán)路補(bǔ)償引腳可用時(shí),利用前饋電容可以調(diào)節(jié)控制環(huán)路。
針對電源的負(fù)載瞬變和啟動(dòng)行為,開發(fā)工具鏈(包括LTpower-CAD,尤其是LTspice)非常有幫助。該工具可以很好的建模和仿真,從而有效實(shí)現(xiàn)FPGA的大輸入電容與電源的輸出電容的去耦。圖6展示了這一概念。雖然POL(負(fù)載端)電源的位置往往靠近負(fù)載,但在電源和FPGA輸入電容之間常常存在一些PCB走線。當(dāng)電路板上有多個(gè)彼此相鄰的FPGA輸入電容時(shí),離電源最遠(yuǎn)的那些電容對電源傳遞函數(shù)的影響較小,因?yàn)樗鼈冎g不僅存在一些電阻,還存在寄生走線電感。這些寄生電感允許FPGA的輸入電容大于電源輸出電容的最大限值,即使所有電容都連接到電路板上的同一節(jié)點(diǎn)也無妨。在LTspice中,可以將寄生走線電感添加到原理圖中,并且可以模擬這些影響。當(dāng)電路建模中包含足夠的寄生元件時(shí),仿真結(jié)果接近實(shí)際結(jié)果。
圖7. 電源輸出電容與FPGA輸入電容之間的寄生去耦。
電壓精度
FPGA電源的電壓精度通常要求非常高。3%的變化容差帶是相當(dāng)常見的。例如,為使0.85 V的Stratix V內(nèi)核電壓軌保持在3%的電壓精度窗口內(nèi),要求全部容差帶僅為25.5 mV。這個(gè)小窗口包括負(fù)載瞬變后的電壓變化以及直流精度。同樣,對于此類嚴(yán)格要求,包括LTpowerCAD和LTspice在內(nèi)的可用電源工具鏈在電源設(shè)計(jì)過程中非常重要。
最后一點(diǎn)建議是關(guān)于FPGA輸入電容的選擇。為了快速提供大電流,通常選擇陶瓷電容。此類電容很適合這種用途,但需要小心選擇,使其真實(shí)電容值不隨直流偏置電壓而下降。一些陶瓷電容,尤其是Y5U型,當(dāng)直流偏置電壓接近其最大額定直流電壓時(shí),其真實(shí)電容值會(huì)降低到只有標(biāo)稱值的20%。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級電容的“外衣”,看看超級電容“超級”在哪兒
- DigiKey 誠邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索